EXPERIMENTAL DETERMINATION OF CONTAMINANT METAL MOBILITY AS A FUNCTION OF TEMPERATURE, TIME, AND SOLUTION CHEMISTRY

PDF Version Also Available for Download.

Description

During the FY96-FY99 funding cycle we examined the uptake of aqueous strontium onto goethite, kaolinite, and amorphous silica surfaces as a function of pH, total strontium, and temperature. Our overall goal was to produce a mechanistic sorption model that can be used in reaction-transport calculations to predict the mobility and attenuation of radioactive strontium (90Sr) in the environment. Our approach was to combine structural information derived from synchrotron-based x-ray absorption spectroscopic analysis together with macroscopic uptake data and surface complexation models to clarify the physical and chemical structure of sorbed complexes. We chose to study these solids because of the ... continued below

Physical Description

vp.

Creation Information

Carroll, Susan A. & O'Day, Peggy A. December 31, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

During the FY96-FY99 funding cycle we examined the uptake of aqueous strontium onto goethite, kaolinite, and amorphous silica surfaces as a function of pH, total strontium, and temperature. Our overall goal was to produce a mechanistic sorption model that can be used in reaction-transport calculations to predict the mobility and attenuation of radioactive strontium (90Sr) in the environment. Our approach was to combine structural information derived from synchrotron-based x-ray absorption spectroscopic analysis together with macroscopic uptake data and surface complexation models to clarify the physical and chemical structure of sorbed complexes. We chose to study these solids because of the prevalence of clays and iron hydroxides in natural systems, and because silica colloids probably form beneath leaking tanks at Hanford as caustic waste is neutralized. We have published the spectroscopic work in two papers in the Journal of Colloid and Interface Science [1, 2], and will soon submit at third manuscript to Geochemical Transactions [3] combining the sorption and spectroscopic data with a mechanistic complexation model.

Physical Description

vp.

Source

  • Other Information: PBD: 31 Dec 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 31, 1999

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 6:31 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 6

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Carroll, Susan A. & O'Day, Peggy A. EXPERIMENTAL DETERMINATION OF CONTAMINANT METAL MOBILITY AS A FUNCTION OF TEMPERATURE, TIME, AND SOLUTION CHEMISTRY, report, December 31, 1999; United States. (digital.library.unt.edu/ark:/67531/metadc786298/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.