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Simulation of Ionic Surfaces f rom an Absolutely Convergent 
Solution of the Madelung Problem 

Dieter Wolf 

Materials Science Division, Argonne National Laboratory, Argonne, lL 60439 

Abstract. The classic Madelung problem is cast into an absolutely convergent 
form that is readily evaluated by dkxt  lattice summation, revealing a net f5 range of 
the net Coulomb potential in ionic crystals and liquids. The realization that 
Coulomb interactions in condensed systems can actually be rather short ranged 
(provided the system is overall neutral) leads to the prediction, verified by computer 
simulations for rocksalt-structured surfaces, that all surfaces in predominantly ionic 
crystals should be fundamentally reconstructed. The work also provides a conceptual 
framework for the theoretical treatment of polar surfaces, as demonstrated for the case 
of the (1 11) surfam of NaCl and MgO. 

1. Introduction 

The classic Madelung problem, i.e., the divergence associated with the r-l term in the 
Coulomb potential of condensed systems [ 11, and its consequences for the physics of 
ionic crystals and liquids have received considerable attention throughout this century. 
The mathematical problems associated with the handling of conditionally convergent 
series have led to computationally expensive - and physically not very transparent - 
summation methods which, based mostly on Ewald's solution 121, are now in 
common use for the simulation of ionic materials. These problems have also given 
rise to a widespread belief that certain "typically ionic" phenomena, such as the 
divergence of the energies of polar surfaces or the long-range charge ordering in ionic 
liquids, are a consequence of the long-ranged Coulomb interactions. [3] However, as 
evidenced, for example, by Evjen's solution of the Madelung problem 141 and by 
extensive simulations of ionic liquids [3], in many instances Coulombic effects Seem 
to cancel almost completely at long range. 

The convergence problems encountered when simply summing the Coulomb 
potential, f r-l, over shells of the rocksalt lattice are illustrated in Fig. 1. Figure 
l(a) (left half) reveals large oscillations of the apparent Madelung energy thus 
obtained between large positive and negative values; its value depends smngly on the 
terminating crystal shell, with no indication of convergence towards the dashed line 
which gives the correct value, E~~d=-3.495116a-l (where a is the cubic lattice 
parameter). Figure l(b) (right half), showing the apparent Madelung energy as a 
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function of the difference between the total number of cations and anions up to a 
given shell, N(+)-N(-), gives some indication as to the origin of this behavior since 
N(+)-N(-) is proportional to the net charge of the crystal up to the distance r. In fact, 
when the system is neutral or almost neutral, values close to the correct Madelung 
energy are obtained. Three such data points are marked by the arrows in Fig. l(a), 
corresponding to the following shell radii and values of N(+)-N(-) (in parentheses): 
0.866a (-2), 2.739a (-2) and 3.464a (0). These observations suggest that the large 
oscillations of the apparent Madelung energy arise directly from the fact that the 
crystal lattice is practically never neutral when terminated by complete crysrd shells. 
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Fig. 1, Total apparent Madelung energy, EMad (in units of the inverse lattice 
parameter, a-I) obtained by simply summing the Coulomb potential, k r-l, over 
shells of the rocksalt lattice. (a) (left half): EMad against shell radius, r (in units of 
the cubic lattice parameter, a); (b) (right half): EM& against the difference, N(+)-N(-), 
between the total number of cations and anions up to a given shell of radius r. 

Based on the above observation, in the present work a simple, absolutely 
convergent solution of the Madelung problem involving direct r-l latrice summation, 
is presented. (For a preliminary report, see Ref. [SI.) As illustrated in Sec. 2, 
operationally the "trick" is to sum over the neutral shells of the Bruvuis lattice and 
not, as in Fig, 1, over the charged shells of the crystal lattice. The convergence 
analysis presented in Sec. 3 demonstrates that the effective Coulomb potential in 
ionic crystals and liquids decreases as r5. This realization leads naturally to the 
prediction, illustrated here for materials with NaCl structure, that most ionic-crystal 
surfaces should reconstruct in a manner that involves "molecular" building blocks 
(see Sec. 4). The insights gained from understanding the nature of this convergence 
also provide a conceptual framework for the theoretical treatment of polar surfaces, 
another long-standing problem in the physics of ionic materials (see Sec. 4). 
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2. A Dipolar Model 

As illustrated above, the main difficulty in the evaluation of Madelung's constant by 
direct lattice summation arises from the fact that most shells of the crystal lattice are 
charged and that, therefore, it is virtually impossible to terminate the summation in a 
way that renders the system as a whole neutral. Figure 2 demonstrates how 
operationally this problem may be overcome by simply summing over neutral shells 
of basis molecules, Le., shells of the Bruvuis lattice with subsequent attachment of 
the neutral basis molecule (such as NaCl, with charges +q). This results in the 
generation of two identical, oppositely charged sublattices displaced relaive to each 
other by the basis vector b. The total "molecular" Coulomb energy, ho,, of some 
ion i at the origin is then given by [5] 

where the first term represents the "intra-molecular" (i-i') interaction while the second 
is the "inter-molecular" interaction of ion i with the molecules in shells with radii 
qj=rs (see Fig. 2). 

Fie. 2. Neutral shells of NaCl "molecules" are obtained by attachment of the NaCl 
basis dipoles to the sites of the fcc Bruvais lattice (schematic). rsslj denotes the radii 
of the shells of the Bravais lattice. 

Intuitively one would expect the double sum in Eq. (1) to converge rapidly for 
the following two reasons. First, because the direction of b is fixed while that of rij 
is averaged over a discrete set of Bravais points on a sphere, within a given Bravais- 
lattice shell &e., for a fixed value of rij=rs), the values of l/rij-l/qj between 
small positive and negative (for *j*>90° and 6,*c9O0, respectively; see Fig. 2). By 
contrast with a sum over charged shells of the crystal lattice (involving very large, 
non-Compensated kl/rij terms), the sum in Eq. (1) over Bravais shells therefore 
involves differences between very small terms. Second, these already small positive 
or negative net values obtained for each shell are summed over the entire Bravais 
lattice, with rapidly decreasing small negative and positive values as r, increases. 
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The rapid convergence of the total sum, in Eq. (1) is illustrated in Fig. 3 
for an fcc Bravais latrice with a dipolar NaCl basis (see also Fig. 2). Notice that the 
contributions from complete dipolar shells in Eq. (I), E;lter(rs) (right scale in Fig. 
2), indeed fluctuate about zero while decreasing rapidly with increasing shell radii. 
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FiP 3, Evaluation of Eq. (1) for an fcc Bravais lattice with dipolar NaCl basis. [SI 
Filled circles (right scale): shell-by-shell contributions to the energy in Eq. (1). 
Open squares (left scale): sum of all shell contributions. The point at r,=O 
corresponds to the intra-molecular energy, -1/0.5a = -2/a. 
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An apparent problem with the dipolar sum in Fig. 3 is that it does not converge 
to the correct Madelung energy, EMad=-3.49513 q2/& instead, the value Ed$=- 
1.40074 q2/a is obtained. However, a sum over shells of dipoles cannot be 
terminated without rendering the system as a whole polarized (see Fig. 2). To obtain 
the correct Madelung energy, the polarization energy, EP1, has to be subtracted; Le., 

EMad = - G o 1  - (2) 

Since each molecule contributes a dipole moment of qb to the polarization (Fig. 2), 
the related dipole energy per unit volume is given by 161 

Epoi = (W3R) (qbI2, (3) 

where C2 is the "molecular" volume. In the fcc lattice, &a3/% with lbl=a/2 for the 
NaCl basis molecule, we obtain Qol = (2x/3) q2/a = 2.09439 which, when 
subtracted from Lot in Fig. 3, gives the correct Madelung energy. 

By choosing a basis molecule without a dipole moment, this polarization 
correction can be avoided altogether. Thus, instead of viewing the NaCl lattice as an 
fcc Bravais lattice with a dipoZur basis, one can choose the simple cubic (sc) Bravais 
lattice with the cube-shaped ocropolur (NaCl)4 basis shown in Fig. 4. Avoiding thus 

tnt 
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the generation of a long-range polarization of the system, the direct r-l Coulomb 
sum based on Eq. (1) (in which, however, dipolar molecules and shells are replaced 
by octopolar ones) gives the Madelung energy directly, as demonstrated in Fig. 5. 

Fiv 4, Octopolar, dipole-moment-free (NaCl)4 building block of the rocksalt lattice 
viewed as a simplecubic Bravais lattice. a is the cubic lattice parameter. 
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Fip. Z Evaluation of Eq. (1) for an sc Bravais lattice with the octopolar (NaC1)4 
basis in Fig. 4. [5] Filled circles (right scale): shell-by-shell contributions in Eq. (1) 
against shell radius, r,. Open squares (left scale): sum of all shell contributions, 
including the intramolecular contribution (see also Fig. 3.) The arrow indicates the 
c o m t  Madelung energy. 

An interesting property of the direct-summation method involving octopolar 
molecules is that the intra-molecular contribution (see Fig. 4), 

Emus = (q2/a) [- 6 + 3 42 - 2/43] = -2.91206 (q2/a) , (4) 
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is identical to that obtained from Evjen's method [4,7] while avoiding the 
ambiguities associated with the assignment of fractional charges to the ions in the 
unit cell. The latter is particularly important when considering defected ionic crystals. 

The above results are summarized in Fig. 6 showing the Madelung energy 
obtained by direct summation for rocksalt viewed as (a) an fcc Bravais lattice with 
dipolar NaCl basis (see Fig. 3 and Eq. (2)) @ (b) an sc Bravais lattice with octopolar 
(NaC1)4 basis. In the latter case, EMad E Emol (see Eqs. (1) and (2), with Ep0i = 0). 
This comparison demonstrates that the dipolar and octopolar sums converge to 
identical vaIues. This suggests that the sum over octopoles may be broken down 
into the contributions due to the four dipoles 1-2 to 7-8 forming the octopole (see 
Fig. 7). As seen from the values listed in Table 1, summing the four dipole 
potentials at the site of any ion reproduces, indeed, the correct Madelung constant. 

Table 1, Determination of the octopolar Madelung energy of the (sc) NaCl lattice as 
a sum of the potentials of four interpenetrating sc Bravais lattices with the dipolar 
bases 1 - 2 to 7 - 8 sketched in Fig. 7. 

1 - 2  
3 - 4  
5 - 6  
7 - 8  

-2.2 1775 
+0.74293 
- 1.0 10 15 
-1.0101 5 

dipole 
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That a direct evaluation of the Madelung energy of the NaCl lattice involving 
octopolar molecules is possible merely with pencil and paper was pointed out earlier 
by Lacman [8]. His "octopolar approximation" is based on the fact that the 
interaction between complete octopolar molecules decreases as rs-7 [9]. The above 
analysis demonstrates that it is not necessary to consider the interactions only 
between complete octopoles. Instead, while avoiding the polarization problem, this 
"approximation" follows from the more funciamental rs-5 convergence behavior for 
the summation involving dipolar shells of the Bravais lattice (see the next section). 

1 2 
Fig.. 7, Breakdown of the sum over octopoles into four contributions from dipoles 
labeled 1 - 2 to 7 - 8; see also Table 1. 

3. Convergence 

A formal investigation of the convergence behavior of Eq. (1) with Fig. 2 starts with 
a power expansion of the inter-molecular terms with subsequent summation over the 
dipolar shells of the Bravais lattice. Introducing the angle f i ~  between rij and b (see 
Fig. 2), these terms may be written in the familiar manner as 

For b/rij<<l, the quare root can be expanded into a power series and inserted into 
Eq. (1). We define the angular sums over complete dipolar Bravais shells by 

where N(rs) is the number of Bravais sites (i.e., NaCl molecules) in a given shell, 
labeled by j'(r9. Equation (1) may then be written as follows [5]: 

= - 2 { 1 + GsN(rs) [(--) b 2  <COSt3>rS - &) l b 3  (1-3<coS2fi>rs) - &) l b 4  
S S 
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Because of the inversion symmetry of Bravais lattices, all odd powers of the 
cosine summed over the dipolar shells vanish identically. With the exception of the 
quadratic term (for which <COS%9>rs=l~), the even powers in Eq. (6) vary from one 
shell to another, and no simple rs-independent values attain. However, using these 
properties, the leading rsdependent term in Eq. (7) is found to be of 5th order, 191 

( 5 )  ( 7 )  ( 9 )  ’ *  X E + E  + E  

0 $4 

while the next higher-order terms are E(7)-r;7 and E(9)4;9, etc. The convergence 
of the Coulomb energy in Eq. (1) is therefore determined by E(5). 

A shell-by-shell comparison of the analytical expression for E(5) in Eq. (8) and 
the sum of the three lowest-order terms, E(5)+E(7)+E(9), with the results determined 
by direct evaluation of Eq. (1) is shown in Fig. 8 (for the fcc Bravais lattice with 
dipolar basis). According to Fig. 8, for Bravais-shell radii r,>a, the lowest-order 
analytical results obtained from Eq. (8) agree completely with the direct results. 

0.9 

+ exad 

fcc + NeCl 

* 
* * * * * * a  * 

* 
-0.3 8 I I I 

0.5 1 .o 1.5 2.0 2.5 
r la 

Fig. 8, Coulomb energy for Bravais shells of radii r, determined analytically from 
E (8) for E@), from Eqs. (7) and (8) for the sum of the three lowest-order terns, 

the fcc Bravais lattice with dipolar basis (see also Fig. 3, right scale). 

S 

E( (3 )+E(7)+E(9), and numerically (Le.. exact results) by directly evaluating Eq. (1) for 

According to Eq. (8), E(5) vanishes identically for any shell for which 
<COS~I~>~~=O.Z, and the signs of any non-vanishing contributions are given by the 
deviation from this value. As seen from Fig. 9, the shell-by-shell values of 
Cc0s46>rs scatter practically randomly about 0.2. giving rise to the fluctuations 
about zero in Emkr(rs) in Figs. 3 (right scale) and 8. We finally mention that, since 
the order in which the individual r-l terms in Eq. (1) are summed does not matter, the 
direct summation sketched in Fig. 2 and Eq. (1) is absolutely convergent. 

That the above arguments are not limited to a perfect crystal latfice is readily 
seen. For example, Coulomb interactions in liquids are usually evaluated by using 3- 
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Fig. 9, Shell-by-shell values of <COS~IY>~~  defined in Eq. (6), governing the 
absolute-convergence property of Eq. (8). 

4. Free Surfaces 

The above convergence analysis shows that, from a Coulomb point of view, the 
rocksalt structure should be viewed as an sc Bravais lattice with an octopoku basis 
rather than an fcc Bravais lattice with a dipolar basis. This raises the question as to 
whether free surfaces should not also be made up of octopolar building blocks. [81 

Fie. 10, Creation of atomically flat (a) (1 10) and (b) (1 11) surfaces in (fcc) rocksalt 
requires the breaking up of the octopoles. 



10 

Table 2. Relaxed energies (in mJ/rn2) of octopolar and flat surfaces of NaCl[51 and 
MgO [lo] using the "type-2" potentials of Catlow et al. [I 11 and Cadow et al. [121, 
respectively. The NaCl results for the (100) and flat (110) surfaces are slightly 
higher than those given by Tasker [13] due to his use of the shell model, by contrast 
with the present results. The energies and structures determined via direct r-l lattice 
summation and by means of EwaId's method agree quantitatively. [5,101 

NaCl MgO 
surface fcc+dip. sc+oct. fcc+dip. sc+oct. 

(100) 223 223 1224 1 224 
(1 10) 456 366 2490 1993 

(1 11) "+" term. 00 539 m 2879 
(1 1 1) "-" term. m 546 m 2899 

As illustrated in Fig. 10 for the (1 10) and (1 11) surfaces in the rocksalt sbucture, 
creation of atomically flat surfaces generally requires a breaking up of the octopoles 
(except for the special case of the (100) surface). Table 2, giving the relaxed zero- 
temperature energies of the three principal surfaces in NaCl and MgO for both the 
atomically flat (fcc) surface and its octopolar (sc) reconstruction, illustrates that the 
breaking of up octopoles, indeed, increases the surface energy substantially. 

The effect of octopolar reconstruction is particularIy pronounced €or the charged 
(1 11) surfaces whose f cc  energy is infinite (see Fig. 11). This divergence is well- 
known to arise from the long-range dipole moment in the IAfC-BfA-C+BI stacking 
of (1 11) NaCl planes created when attaching NaCl dipoles to the IABCI stacking of 
fcc (1 11) planes. 

< I l l >  

t 
t l 1  I >  

t B' 

C c+ 

NaCl 
Bravais i- basis - lattice - NPCl fcc 

Fig. 11, Creation of the polar structure of the (111) surface in rocksalt by 
attachment of c11 l>-oriented NaCl basis molecules to an .JABCI.. stack of (1 11) 
planes in the fcc Bravais lattice. In accordance with the flat-plate capacitor problem, 
the energy of the slab diverges for infinitely separated, oppositely charged surfaces. 
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By contrast, the IB-1/4A+3/4C-B+A-C+B-3'4A+1/41 stacking obtained when 
attaching (NaC1)4 octopoles to the IABCI stacking of sc (1 11) planes (see Fig. 12) 
does not generate a dipole moment, although the two outermost (1 11) planes thus 
generated are still charged, however with only 1/4 and 3/4, respectively, of the charge 
of perfect-crystal (1 11) planes. The two oppositely charged octopolar "ground-state" 
structures with slightly different energies thus predicted therefore involve the top 
three lattice planes. However, the energies of both surfaces are finite and typically 
about two and a half times as large as that of the (100) surface (see Table 2); Le., 
there is a reasonable chance that the surface appears in the crystal shape at elevated 
temperatures [141. 

t l 1 7 2  

t 
C 

sc fh'aCl), 
Brauais + basis 

c f l 7 >  

t 
A+ +l - t;; 

-4 A- I 

NaCl 
lattice - - 

Fig. 12, Creation of the octopolar "ground-state" structure of the (1 11) surface in 
rocksalt by attachment of 4 1 I>-oriented octopolar molecules (see Fig. 10) to an 
..IABCI.. stack of (111) planes in the sc Bravais lattice. The (either positively or 
negatively charged) outermost planes contain only 1/4 of the ions of a regular, fully 
occupied idealcrystal (1 11) plane. The next plane towards the bulk is 3/4 filled and 
oppositely charged while, finally, the third plane from the surface is completely 
filled. This octopolar reconstruction involving the top three surface planes eliminates 
the long-range dipole moment of the flat but polar (fcc-based) surface in Fig. 11. 

According to Table 2, in NaCl the cation-terminated (1/4 occupied) surface is 
favored slightly over the anion-terminated (1/4 occupied) surface whereas in MgO the 
anion-terminated surface has the lower energy. This difference arises from an intricate 
balance between the Coulomb and short-range-repulsive contributions to the total 
(1 1 1)-surface energy, indicating possibly a strong materials dependence of the structure 
of charged surfaces, by contrast with the structure of neutral surfaces. It also indicates 
that the structure and energy of charged surfaces are not dominated by Coulombic effects 
but, instead, by the short-range repulsion between the ions, Le., by size effects. 
Unfortunately, no experimental verification of this octopolar reconstruction of either 
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the (1 10) or the (1 l l)  surface is to date available from experiments nor has the net 
charge of the terminating (1 11) plane been determined. 

We finally mention that the predicted octopolar "ground-state" structures of alI 
surfaces in (sc) rocksalt may be viewed as faceted (100) surfaces. For the (110) surface, 
this faceting has the appearance of the missing-row structure in Fig. lqa); for the (1 11) 
surface, the partially charged - yet dipole-moment free - structure in Figs. 1O(b) and 12 
is obtained. 
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