THERMAL STUDY OF THE DIII-D MACHINE HEAT REMOVAL CAPACITY

PDF Version Also Available for Download.

Description

OAK-B135 With each plasma shot, the DIII-D tokamak dissipates 0.5 to 1.0 GJ of energy. Plasma shots may occur as frequently as every ten minutes, and the energy is removed in the form of heat by a cooling water system. to remove heat from the machine, cooling water circulates through each major heat source. These sources include the power supplies, motor/generator, rf current drives, neutral beam power supplies, magnetic field coils, and vacuum vessel. The cooling water system consists of isolated primary and secondary cooling loops separated by intermediate heat exchangers. As future DIII-D plans include operation during summer months ... continued below

Physical Description

7 pages

Creation Information

YIP,H; ADERSON,P.M; HOLTROP,K.L & HARRISON,S October 1, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

OAK-B135 With each plasma shot, the DIII-D tokamak dissipates 0.5 to 1.0 GJ of energy. Plasma shots may occur as frequently as every ten minutes, and the energy is removed in the form of heat by a cooling water system. to remove heat from the machine, cooling water circulates through each major heat source. These sources include the power supplies, motor/generator, rf current drives, neutral beam power supplies, magnetic field coils, and vacuum vessel. The cooling water system consists of isolated primary and secondary cooling loops separated by intermediate heat exchangers. As future DIII-D plans include operation during summer months and longer pulse duration, the cooling system's overall heat removal capability and performance efficiency must be assessed. Temperature and flow data from around the DIII-D facility are collected by a programmable logic controller (PLC); the data are used to analyze the heat generating sources, the heat transfer rate to intermediate heat exchangers, and the ultimate heat rejection to the environment via the cooling towers. A comparison of the original DIII-D machine design versus the actual performance determines the margin of heat removal capacity. projections of the heat removal rate for various longer plasma shots are made. Improvements in design and/or operational procedure will be necessary to attain the desired pulse duration.

Physical Description

7 pages

Notes

INIS; OSTI as DE00823604

Source

  • 20th IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, SAN DIEGO, CA (US), 10/14/2003--10/17/2003; Other Information: TO BE PUBLISHED IN FUSION SCIENCE AND TECHNOLOGY

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: GA-A24480
  • Grant Number: AC03-99ER54463
  • Office of Scientific & Technical Information Report Number: 823604
  • Archival Resource Key: ark:/67531/metadc786253

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Jan. 4, 2017, 2:08 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

YIP,H; ADERSON,P.M; HOLTROP,K.L & HARRISON,S. THERMAL STUDY OF THE DIII-D MACHINE HEAT REMOVAL CAPACITY, article, October 1, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc786253/: accessed December 10, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.