Engineered Antibodies for Monitoring of Polynuclear Aromatic Hydrocarbons

PDF Version Also Available for Download.

Description

The objective is to develop improved antibody-based methods for detection of multiple polynuclear aromatic hydrocarbons (PAHs), to fill several needs in DOE's remediation, regulatory monitoring, ecotoxicology, and human health effects missions. Present-generation immunochemical detection methods have already proven to be useful and cost-effective in DOE applications. The problem being addressed is that the unique properties of PAHs make it impractical to generate antibodies with the required diversity, specificity and selectivity, by the previous techniques. The scientific goals are to determine the mechanisms by which antibodies bind PAHs, use genetic engineering and computational chemistry techniques to construct improved antibodies, and to ... continued below

Physical Description

vp.

Creation Information

Karu, Alexander E.; Roberts, Victoria & Li, Qingxiao June 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The objective is to develop improved antibody-based methods for detection of multiple polynuclear aromatic hydrocarbons (PAHs), to fill several needs in DOE's remediation, regulatory monitoring, ecotoxicology, and human health effects missions. Present-generation immunochemical detection methods have already proven to be useful and cost-effective in DOE applications. The problem being addressed is that the unique properties of PAHs make it impractical to generate antibodies with the required diversity, specificity and selectivity, by the previous techniques. The scientific goals are to determine the mechanisms by which antibodies bind PAHs, use genetic engineering and computational chemistry techniques to construct improved antibodies, and to devise methods for making immunochemical and instrumental analysis more compatible. The potential relevance is that our results should provide a rational basis by which immunochemical and other molecular recognition systems for PAHs and other large classes of toxic pollutants such as PCBs could be produced and deployed with substantially less cost, labor, and development time.

Physical Description

vp.

Source

  • Other Information: PBD: 1 Jun 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-54546--1999
  • Grant Number: FG07-96ER62316
  • DOI: 10.2172/825745 | External Link
  • Office of Scientific & Technical Information Report Number: 825745
  • Archival Resource Key: ark:/67531/metadc786125

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1999

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 7:26 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Karu, Alexander E.; Roberts, Victoria & Li, Qingxiao. Engineered Antibodies for Monitoring of Polynuclear Aromatic Hydrocarbons, report, June 1, 1999; United States. (digital.library.unt.edu/ark:/67531/metadc786125/: accessed August 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.