Bioavailability of Organic Solvents in soils: Input into Biologically Based Dose-Response Models for Human Risk Assessments

PDF Version Also Available for Download.

Description

The purpose of this study was to develop methods to expose rats and humans percutaneously and to use PBPK modeling to assess the percutaneous permeability of volatile compounds from aqueous or soil exposures. To estimate dermal absorption under realistic environmental exposure conditions, a patch system was developed that allowed for the volatilization of the compounds from the soil without contamination of inhaled or exhaled breath. The end product for this research will be a tested framework for the rapid screening of real and potential exposures while simultaneously developing physiologically based pharmacokinetic (PBPK) models to comprehensively evaluate and compare exposures to ... continued below

Physical Description

vp.

Creation Information

Wester, Ronald C. June 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The purpose of this study was to develop methods to expose rats and humans percutaneously and to use PBPK modeling to assess the percutaneous permeability of volatile compounds from aqueous or soil exposures. To estimate dermal absorption under realistic environmental exposure conditions, a patch system was developed that allowed for the volatilization of the compounds from the soil without contamination of inhaled or exhaled breath. The end product for this research will be a tested framework for the rapid screening of real and potential exposures while simultaneously developing physiologically based pharmacokinetic (PBPK) models to comprehensively evaluate and compare exposures to volatile chemicals from either contaminated soil or water.

Physical Description

vp.

Source

  • Other Information: PBD: 1 Jun 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-59282--1999
  • Grant Number: FG07-97ER62509
  • DOI: 10.2172/828375 | External Link
  • Office of Scientific & Technical Information Report Number: 828375
  • Archival Resource Key: ark:/67531/metadc786092

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1999

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 20, 2016, 6:41 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Wester, Ronald C. Bioavailability of Organic Solvents in soils: Input into Biologically Based Dose-Response Models for Human Risk Assessments, report, June 1, 1999; United States. (digital.library.unt.edu/ark:/67531/metadc786092/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.