Hydrogen Production via a Commercially Ready Inorganic Membrane Reactor Semi-Annual Technical Progress Report: April-September 2004

PDF Version Also Available for Download.

Description

During the 2nd half of Year I, we continued the development of the microporous ceramic layer as a transition layer for the deposition of the carbon molecular sieve membrane on the stainless steel substrate offered by Pall Corp. Based upon the positive result from the feasibility study conducted in the 1st half of Year I, our activities in this period focused on eliminating the high pore size peak and the minimization of defect. A microporous ceramic layer with 40A pore size and <1% initial flow have been successfully prepared. Further, this modified membrane has demonstrated excellent thermal stability, <1% initial ... continued below

Physical Description

19 pages

Creation Information

Liu, Paul K. T. March 8, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Titles

Description

During the 2nd half of Year I, we continued the development of the microporous ceramic layer as a transition layer for the deposition of the carbon molecular sieve membrane on the stainless steel substrate offered by Pall Corp. Based upon the positive result from the feasibility study conducted in the 1st half of Year I, our activities in this period focused on eliminating the high pore size peak and the minimization of defect. A microporous ceramic layer with 40A pore size and <1% initial flow have been successfully prepared. Further, this modified membrane has demonstrated excellent thermal stability, <1% initial flow after the 5 thermal cycles. In addition we began the CMS layer deposition on the AccuSep with the ceramic transition layer. The CMS membranes fired at the low temperature range demonstrate an excellent hydrogen permeance, up to >5 m{sup 3}/m{sup 2}/hr/bar, with the selectivity of {approx}20 for H{sub 2}/N{sub 2}. The extremely high permeance is indicative of the extremely thin CMS membrane layer, which becomes possible as a result of the uniform and defect free transition layer. This could be an ideal membrane for hydrogen recovery applications where the hydrogen permeance is the primary concern. Presently we are actively pursuing the intermediate temperature firing to enhance the selectivity to above this range without sacrificing too much permeance.

Physical Description

19 pages

Notes

INIS; OSTI as DE00838014

Source

  • Other Information: PBD: 8 Mar 2005

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Grant Number: FC26-03NT41852
  • DOI: 10.2172/838014 | External Link
  • Office of Scientific & Technical Information Report Number: 838014
  • Archival Resource Key: ark:/67531/metadc786077

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 8, 2005

Coverage Date

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • July 2, 2019, 11:40 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Liu, Paul K. T. Hydrogen Production via a Commercially Ready Inorganic Membrane Reactor Semi-Annual Technical Progress Report: April-September 2004, report, March 8, 2005; United States. (https://digital.library.unt.edu/ark:/67531/metadc786077/: accessed July 23, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.