Effect of Substrate Orientation on Phase Separation in Epitaxial GaInAsSb

PDF Version Also Available for Download.

Description

The effect of substrate misorientation on phase separation in Ga{sub 1-x}In{sub x}As{sub y}Sb{sub 1-y} nominally lattice-matched to GaSb is reported. The layers were grown at 575 C by organometallic vapor phase epitaxy on vicinal (001) GaSb substrates, miscut 2{sup o} {yields} (-111)A, (1-11)B, or (101). Ga{sub 1-x}In{sub x}As{sub y}Sb{sub 1-y} (x {approx} 0.1, y {approx} 0.09) layers, which have 300-K photoluminescence (PL) peak emission at {approx}2.1 {micro}m, grow step-bunched and exhibit minimal phase separation. The full width at half maximum of 4-K PL spectra is slightly smaller at 7 meV for layers grown on substrates miscut toward (1-11)B compared to ... continued below

Physical Description

1520 Kilobytes pages

Creation Information

Wang, C.A.; Calawa, D.R. & Vineis, C.J. April 20, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Lockheed Martin
    Publisher Info: Lockheed Martin Corporation, Schenectady, NY 12301 (United States)
    Place of Publication: Schenectady, New York

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The effect of substrate misorientation on phase separation in Ga{sub 1-x}In{sub x}As{sub y}Sb{sub 1-y} nominally lattice-matched to GaSb is reported. The layers were grown at 575 C by organometallic vapor phase epitaxy on vicinal (001) GaSb substrates, miscut 2{sup o} {yields} (-111)A, (1-11)B, or (101). Ga{sub 1-x}In{sub x}As{sub y}Sb{sub 1-y} (x {approx} 0.1, y {approx} 0.09) layers, which have 300-K photoluminescence (PL) peak emission at {approx}2.1 {micro}m, grow step-bunched and exhibit minimal phase separation. The full width at half maximum of 4-K PL spectra is slightly smaller at 7 meV for layers grown on substrates miscut toward (1-11)B compared to 9 meV for layers grown on substrates miscut toward (-1-11)A and (101). Ga{sub 1-x}In{sub x}As{sub y}Sb{sub 1-y} layers with higher alloy composition (0.16 {le} x {le} 0.19, 0.14 {ge} y {le} 0.17), which have 300-K PL peak emission at {approx}2.4 {micro}m, have significant phase separation. These layers are characterized by increased lattice constant variations and epitaxial tilt, broad PL spectra with significant band tailing, and strong contrast modulation in transmission electron microscopy. The degree of decomposition depends on substrate miscut direction: Ga{sub 1-x}In{sub x}As{sub y}Sb{sub 1-y} layers grown on (001) 2{sup o} {yields} (1-11)B substrates are more homogeneous than those grown on (001) 2{sup o} {yields} (-1-11)A and (001) 2{sup o} {yields} (101) substrates. The results are attributed to the smaller adatom diffusion length on substrates miscut toward (1-11)B.

Physical Description

1520 Kilobytes pages

Notes

OSTI as DE00822095

Source

  • Other Information: PBD: 20 Apr 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LM-01K032
  • Grant Number: AC12-00SN39357
  • DOI: 10.2172/822095 | External Link
  • Office of Scientific & Technical Information Report Number: 822095
  • Archival Resource Key: ark:/67531/metadc786047

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 20, 2001

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 28, 2016, 8:43 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Wang, C.A.; Calawa, D.R. & Vineis, C.J. Effect of Substrate Orientation on Phase Separation in Epitaxial GaInAsSb, report, April 20, 2001; Schenectady, New York. (digital.library.unt.edu/ark:/67531/metadc786047/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.