Fibrous Monolith Wear Resistant Components for the Mining Industry

PDF Version Also Available for Download.

Description

During the reporting period, work continued on development of formulations using the materials down-selected from the initially identified contenders for the fibrous monolith wear resistant components. In the previous reporting period, a two-stage binder removal process was developed that resulted in prototype parts free of voids and other internal defects. During the current reporting period, work was performed to characterize the two-stage binder removal process for WC-Co based FM material systems. Use of this process has resulted in the fabrication of defect free sintered WC-Co FM bodies, with minimal free carbon porosity and densities approaching 100% theoretical. With the elimination ... continued below

Physical Description

21 pages

Creation Information

Rigali, Mark J. & Fulcher, Mike L. March 25, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

During the reporting period, work continued on development of formulations using the materials down-selected from the initially identified contenders for the fibrous monolith wear resistant components. In the previous reporting period, a two-stage binder removal process was developed that resulted in prototype parts free of voids and other internal defects. During the current reporting period, work was performed to characterize the two-stage binder removal process for WC-Co based FM material systems. Use of this process has resulted in the fabrication of defect free sintered WC-Co FM bodies, with minimal free carbon porosity and densities approaching 100% theoretical. With the elimination of free carbon porosity and other binder removal process related defects, development work focused on optimizing the densification and eliminating defects observed in WC-Co based FM consolidated by pressureless sintering. Shrinkage of the monolithic core and shell materials used in the WC-Co based FM system was measured, and differences in material shrinkage were identified as a potential cause of cell boundary cracking observed in sintered parts. Re-formulation of material blends for this system was begun, with the goal of eliminating mechanical stresses during sintering by matching the volumetric shrinkage of the core and shell materials. Thirty-three 7/8 inch drill bit inserts (WC-Co(6%)/WC-Co(16%) FM) were hot pressed during the reporting period. Six of these inserts were delivered for field-testing by Superior Rock Bit during the upcoming reporting period. In addition, Al{sub 2}O{sub 3}/Al{sub 2}O{sub 3}-TiCN FM cutting tool inserts were fabricated, and cutting tests performed.

Physical Description

21 pages

Notes

OSTI as DE00829541

Source

  • Other Information: PBD: 25 Mar 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: FC26-01NT41051
  • DOI: 10.2172/829541 | External Link
  • Office of Scientific & Technical Information Report Number: 829541
  • Archival Resource Key: ark:/67531/metadc786045

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 25, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Jan. 11, 2018, 2:36 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Rigali, Mark J. & Fulcher, Mike L. Fibrous Monolith Wear Resistant Components for the Mining Industry, report, March 25, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc786045/: accessed December 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.