Flow channeling and analysis of tracer tests in heterogeneous porous media

PDF Version Also Available for Download.

Description

Flow and solute transport through porous medium with strongly varying hydraulic conductivity are studied by numerical simulations. The heterogeneity of the porous medium is defined by {sigma} and {lambda}{prime}, which are, respectively, the standard deviation of natural log of permeability values and its correlation range {lambda} divided by transport distance L. The development of flow channeling as a function of these two parameters is demonstrated. The results show that for large heterogeneities, the flow is highly channelized and solute is transported through a few fast paths, and the corresponding breakthrough curves show a high peak at very early times, much ... continued below

Physical Description

22 pages

Creation Information

Moreno, Luis & Tsang, Chin-Fu November 3, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 40 times , with 4 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Flow and solute transport through porous medium with strongly varying hydraulic conductivity are studied by numerical simulations. The heterogeneity of the porous medium is defined by {sigma} and {lambda}{prime}, which are, respectively, the standard deviation of natural log of permeability values and its correlation range {lambda} divided by transport distance L. The development of flow channeling as a function of these two parameters is demonstrated. The results show that for large heterogeneities, the flow is highly channelized and solute is transported through a few fast paths, and the corresponding breakthrough curves show a high peak at very early times, much shorter than the mean residence time. This effect was studied for a converging radial flow, to simulate tracer tests in a fracture zone or contact-thickness aquifer. It is shown that {sigma}{sup 2}{lambda}{prime} is an appropriate parameter to characterize the tracer dispersion and breakthrough curves. These results are used to study tracer breakthrough data from field experiments performed with nonsorbing tracers. A new procedure is proposed to analyze the results. From the moments of the residence-time distribution represented by the breakthrough curves, the heterogeneity of the porous medium, as characterized by {sigma}{sup 2}{lambda}{prime} and the mean residence time t{sub o}, may be determined.

Physical Description

22 pages

Notes

OSTI as DE00836660

Source

  • Journal Name: Water Resources Research; Journal Volume: 30; Journal Issue: 5; Other Information: Submitted to Water Resources Research: Volume 30, No.5; Journal Publication Date: 05/1994

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--49153
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 836660
  • Archival Resource Key: ark:/67531/metadc785924

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 3, 2001

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 4, 2016, 4:10 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 40

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Moreno, Luis & Tsang, Chin-Fu. Flow channeling and analysis of tracer tests in heterogeneous porous media, article, November 3, 2001; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc785924/: accessed July 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.