A Benchmarking Analysis for Five Radionuclide Vadose Zone Models (Chain, Multimed{_}DP, Fectuz, Hydrus, and Chain 2D) in Soil Screening Level Calculations

PDF Version Also Available for Download.

Description

Five vadose zone models with different degrees of complexity (CHAIN, MULTIMED{_}DP, FECTUZ, HYDRUS, and CHAIN 2D) were selected for use in radionuclide soil screening level (SSL) calculations. A benchmarking analysis between the models was conducted for a radionuclide ({sup 99}Tc) release scenario at the Las Cruces Trench Site in New Mexico. Sensitivity of three model outputs to the input parameters were evaluated and compared among the models. The three outputs were peak contaminant concentrations, time to peak concentrations at the water table, and time to exceed the contaminants maximum critical level at a representative receptor well. Model parameters investigated include ... continued below

Physical Description

17 pages

Creation Information

Chen, J-S.; Drake, R.; Lin, Z. & Jewett, D. G. February 26, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Five vadose zone models with different degrees of complexity (CHAIN, MULTIMED{_}DP, FECTUZ, HYDRUS, and CHAIN 2D) were selected for use in radionuclide soil screening level (SSL) calculations. A benchmarking analysis between the models was conducted for a radionuclide ({sup 99}Tc) release scenario at the Las Cruces Trench Site in New Mexico. Sensitivity of three model outputs to the input parameters were evaluated and compared among the models. The three outputs were peak contaminant concentrations, time to peak concentrations at the water table, and time to exceed the contaminants maximum critical level at a representative receptor well. Model parameters investigated include soil properties such as bulk density, water content, soil water retention parameters and hydraulic conductivity. Chemical properties examined include distribution coefficient, radionuclide half-life, dispersion coefficient, and molecular diffusion. Other soil characteristics, such as recharge rate, also were examined. Model sensitivity was quantified in the form of sensitivity and relative sensitivity coefficients. Relative sensitivities were used to compare the sensitivities of different parameters. The analysis indicates that soil water content, recharge rate, saturated soil water content, and soil retention parameter, {beta}, have a great influence on model outputs. In general, the results of sensitivities and relative sensitivities using five models are similar for a specific scenario. Slight differences were observed in predicted peak contaminant concentrations due to different mathematical treatment among models. The results of benchmarking and sensitivity analysis would facilitate the model selection and application of the model in SSL calculations.

Physical Description

17 pages

Source

  • Waste Management 2002 Symposium, Tucson, AZ (US), 02/24/2002--02/28/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 828636
  • Archival Resource Key: ark:/67531/metadc785904

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 26, 2002

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 27, 2016, 2:08 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chen, J-S.; Drake, R.; Lin, Z. & Jewett, D. G. A Benchmarking Analysis for Five Radionuclide Vadose Zone Models (Chain, Multimed{_}DP, Fectuz, Hydrus, and Chain 2D) in Soil Screening Level Calculations, article, February 26, 2002; Tucson, Arizona. (digital.library.unt.edu/ark:/67531/metadc785904/: accessed October 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.