Beam break up analysis for the Berkeley Recirculating Linac Light Source

PDF Version Also Available for Download.

Description

We describe here a study of a single bunch Beam Break Up (BBU) instability for a proposed Berkeley fast x-ray facility based on a recirculating linac [1]. The recirculating linac employs a 600 MeV superconducting RF linear accelerator and the electron beam energy of {approx} 2.5 GeV is reached over four beam passes through the linac. A 120 MeV superconducting RF linear accelerator is used as an injector to the recirculating linac. The machine parameters are listed in Appendix A. The equation describing the transverse displacement x(s,z) of the electrons in an accelerated bunch, as a function of their longitudinal ... continued below

Physical Description

15 pages

Creation Information

De Santis, Stefano & Zholents, Alexander A. January 20, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 29 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

We describe here a study of a single bunch Beam Break Up (BBU) instability for a proposed Berkeley fast x-ray facility based on a recirculating linac [1]. The recirculating linac employs a 600 MeV superconducting RF linear accelerator and the electron beam energy of {approx} 2.5 GeV is reached over four beam passes through the linac. A 120 MeV superconducting RF linear accelerator is used as an injector to the recirculating linac. The machine parameters are listed in Appendix A. The equation describing the transverse displacement x(s,z) of the electrons in an accelerated bunch, as a function of their longitudinal position within the bunch z, can be written in the form [2]: d/ds[{gamma}(s) dx/ds] + k{sup 2}(s){gamma}(s)x(s,z) = r{sub 0}{integral}{sub z}{sup {infinity}}{rho}(z')W{sub {perpendicular}}(z'-z)x(s,z')dz' (1) where {gamma} is the relativistic factor, k the focusing strength, r{sub 0} the classical electron radius, {rho} the bunch density, W{sub {perpendicular}} the transverse wake function per unit length and s indicates the position along the linac. We assume infinitesimally small transverse beam dimensions (a good approximation, when the bunch dimensions are much less than the size of the beam pipe), so that x has to be interpreted as the displacement of the centre of a bunch slice. We also assume a bunch length much less than the betatron wavelength, therefore the displacement in the RHS of Eq.(1) is not retarded and, finally, we use an average transverse wake function obtained averaging the calculated short range wake of a single cavity [2] over the linac length. At first we consider the effect associated with a displacement of the electron bunch at the injection into the perfectly aligned linac. Later we extend the analysis to the case of misalignments of the linac RF cavities and cryomodules. Throughout the paper we compare the results obtained to the output of a simple tracking code, written as a Mathematical notebook. In order to keep the analytical expressions reasonably simple, we model the linac length as entirely filled with RF cavities (thus neglecting all the drift spaces, accounting for as much as one third of the total length). This causes the wakefield intensity used in the analysis to be bigger than the actual value and the average accelerating gradient to be smaller. It is shown in the paper that this corresponds to a conservative estimate of the BBU growth.

Physical Description

15 pages

Notes

INIS; OSTI as DE00840444

Source

  • Other Information: PBD: 20 Jan 2002

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LBNL--49483
  • Report No.: CBP Tech Note 411
  • Grant Number: AC03-76SF00098
  • DOI: 10.2172/840444 | External Link
  • Office of Scientific & Technical Information Report Number: 840444
  • Archival Resource Key: ark:/67531/metadc785648

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 20, 2002

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Sept. 25, 2017, 4:07 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 29

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

De Santis, Stefano & Zholents, Alexander A. Beam break up analysis for the Berkeley Recirculating Linac Light Source, report, January 20, 2002; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc785648/: accessed April 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.