High current density beamlets from RF Argon source for heavy ion fusion applications

PDF Version Also Available for Download.

Description

In a new approach to develop high current beams for heavy ion fusion, beam current at about 0.5 ampere per channel can be obtained by merging an array of high current density beamlets of 5 mA each. We have done computer simulations to study the transport of high current density beamlets and the emittance growth due to this merging process. In our RF multicusp source experiment, we have produced a cluster of 61 beamlets using minimum gas flow. The current density from a 0.25 cm diameter aperture reached 100 mA/cm{sup 2}. The normalized emittance of 0.02 {pi}-mm-mrad corresponds to an ... continued below

Creation Information

Kwan, J.W.; Grote, D.P. & Westenskow, G. August 1, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In a new approach to develop high current beams for heavy ion fusion, beam current at about 0.5 ampere per channel can be obtained by merging an array of high current density beamlets of 5 mA each. We have done computer simulations to study the transport of high current density beamlets and the emittance growth due to this merging process. In our RF multicusp source experiment, we have produced a cluster of 61 beamlets using minimum gas flow. The current density from a 0.25 cm diameter aperture reached 100 mA/cm{sup 2}. The normalized emittance of 0.02 {pi}-mm-mrad corresponds to an equivalent ion temperature of 2.4 eV. These results showed that the RF argon plasma source is suitable for producing high current density beamlets that can be merged to form a high current high brightness beam for HIF application.

Source

  • 10th International Conference on Ion Sources, Dubna, RUSSIA, 09/8-13/2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--53647-Conf.
  • Report No.: HIFAN 1275
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 842740
  • Archival Resource Key: ark:/67531/metadc785628

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 4, 2016, 1:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kwan, J.W.; Grote, D.P. & Westenskow, G. High current density beamlets from RF Argon source for heavy ion fusion applications, article, August 1, 2003; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc785628/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.