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Abstract 
The Advanced Photon Source (APS) at Argonne National 

Laboratory will be a 7-GeV machine. It is anticipated that for 
beam operations beyond the baseline design of 100 mA stored 
beam current, a ttansverse and longitudinal damping system 
is needed to damp instabilities. A key part of this digital 
damping system is digital signal processing. This digital 
system wil l  be used to process samples taken from the beam 
and determine appropriate correction values to be applied to 

digid with adaptable filter Weigh@. be 

MHz. This paper concentrates on the digital processing 
involved in this system, and especially on the adaptive 
algorithms used for determining the digital filter weights. 

tunes and a third for the longitudinal tune. For A P S  the same 
digital transversal filter design can be used for all three tunes. 
This paper deals with the design of fdter coefficients. 

It is natural to use a single pickup for this type of system. 
One stripline can readily be used to measure the two 
transverse displacements and longitudinal phase of each 
bunch on each turn. Two turns of information can be used to 
calculate the kick which needs to be applied to the bunch in 
order to cancel its transverse velocity. Let 

be the displacement of a bunch on one turn. On the next turn 

(2) 

the beam. The processing will take the form of a transversal y1 =Asin$ (1) 

done at 176 h4Hz with a possible correction bandwidth of 88 &e displacement will be 
y2 = A sin(2m + 4,), 

where v is the fractional tune. The transverse velocity of this 
bunch at the kicker will be 

I. INTRODUCTION 

If there are no interactions between circulating bunches of 
a synchrotron, the motion of each bunch can be described by 
three harmonic oscillators corresponding to the three tune 
frequencies. In real synchrotrons, coupling will be present, 
and proper description is in terms of the normal modes. If 
there are N bunches, there will be N modes and N tunes. It 
turns out however, that in many practical cases the tune shift 
from the non-coupled frequency is either nearly the same for 
all modes, or very small. Thus, all coupled modes can be 
taken as having the same frequency. All coupled bunches can 
thus be described, as in the uncoupled case, as three harmonic 
oscillators characterized by the same three tune-shifted 
frequencies. 

This is the case in the APS storage ring [l]. In one 
simulation of the resistive wall instability, 54 evenly spaced 
bunches were assumed circulating in the ring to achieve the 
maximum design current of 300 mA. The fractional vertical 
tune. v,=0.3. was reduced by an average of 6% for the 54 
modes. The tune spread however, was only 0.7%. Under the 
same circumstances, a growth rate of 400/s in the 
longitudinal motion due to a single cavity higher-order mode 
@OM) will result in a maximum of 2% tune shift in an 
affected coupled bunch mode, In the A P S  ring, HOM-induced 
lon_gitudinal growth rates are expected to usually be below 
2OO/s resulting in a maximum tune spread of 2%. 

Since all bunches can be treated as having the same three 
tune frequencies, a bunch-by-bunch damping system can be 
implemented with one filter for each of the two transverse 

y3 = B C O S ( ~ ~ V  + 4, + K), (3) 

(A/B)Y3 =alYl +a2y29 (4) 

a, = [sin(2m + K)- cot(2m) cos(2nv + K)] (5 )  
a2  = cos(2m+~)/sin(2m). (6) 

Thus, a two-term transversal filter is adequate for dealing 
with the transverse motion. 

There are a number of reasons why more than two terms 
are desirable. One is that the detrimental effects of noise and 
digitizing granularity can be reduced. A second is that offset 
errors can be reduced. A third is that greater flexibility in the 
coefficient set is achieved, thus allowing a greater amount of 
adaptability due to the larger number of coefficients. 

where K and B are determined from the betatron amplitude 
and phase considerations. It is straightforward to show that 

where 

IT. TRANSVERSAL FILTER 

A. Theory 
A general way to arrive at a useful set of coefficients is 

suggested by the following. Suppose there is a continuous 
signal 

At t=O this will have the value 
s(0) = so cos($). (8) 

In order to phase shift the value of the signal at t=O by 8. one 
can take a second signal 

s(t)=s, cos(oti$). (7) 
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T 

r(t) = -cos(ot + e), (9) 
where 03=21JT (T is the period of the cosine wave). Now 
compute the integral 

I =  i s(t)r(t)dt=so ws($-8) (10) 
-T 

and the desired phase shift is accomplished. By changing r(t), 
the amplitude of I can also be controlled. 

If the signal is sampled, one can achieve the phase 
shifting by a sum of products. This is accomplished by using 
a transversal filter. Thus, if a signal were taken for N 
revolutions, 

n =-(N-1), ..., 0 (11) 
and we use weights 

x[n] = D c o s ( 2 m  + $) 

2 
N 

b = - cos(2mj + e), 
then 

(13) 
0 

I =  x b , ,  x[n] 

should give us the desired phase-shifted signal. To calculate 
the proper kick, one simply chooses the appropriate 8 and 
adjusts the amplitude to take the beta function into account. 
Thus, suppose the transverse velocity at the kicker is 

n=-(N-1) 

The phase shift is 

(15) 
IC 

8=--K. 
2 

The term vo/D is determined from the beta functions at the 
pickup and kicker. 

B. Application of Filter Design 
The main goal of the digital signal processing, or DSP, is 

to develop a transversal filter to process the incoming data 
[2]. The filter should be adaptive in order to deal with 
changes in the beam. Specifically, tune shifts could warrant 
an update to the filter. The main goal of the filter is to 
provide the proper phase and amplitude shift to the incoming 
signal that will produce the desired output for the kicker. Any 
DC offset must also be minimized. The input signal is of the 
form 

xi[n]=Di ~ o s ( 2 m v + $ ~ ) + E ~ .  (16) 
where i is the bunch number, n is the turn number, v is the 
fractional tune, + is the reference phase, and D and E are 
constants. It is desired for the filter to produce some output 
x',[n] such that 

x' [n] = DiF-sin(2mv + oi + K). ( 17) 
F is known a priori and so is K. The value of K is related to 
the change in the betatron phase from the pickup to the 
kicker. It is possible to synthesize x',[n] independently from 
x,[n] if @ is known accurately enough. This would allow for 

perfect DC offset cancellation (E, in Eq. (16)). "he problem is 
that D, in Eq. (16) is not h o w  and must be derived from 
multiple measurements of x,[n]. At least two measurements 
would be required and probably more would be used in 
practice. Unfortunately, it will take too long to solve for D, 
and synthesize x',[n]. This leaves some sort of real-time 
filtration of x,[n] to produce x'i[n]. 

The transversal filter will take the form of 
N-1 

j=O 

where N is the number of filter weights. The fdter operates on 
data from past turns as well as the present turn (assuming 
N>l). Each bunch in the ring will have to be dealt with 
separately, but will use the same filter. 

The goal now is to design the filter weights (the bj's in Eq. 
(18)) in order to model Eq. (17). The filter must effectively 
implement the gain, the phase shift (this also includes 
transforming the cosine to a sine), and the DC offset 
rejection. From the derivation in the previous section, a sine 
wave in the filter coefficients will be used. From Eqs. (12) 
and (15), take the weights to be 

b, = ~ ~ s ( ~ x ~ v + ~ - K ) .  N (19) 

Using Eqs. (16) and (19), Eq. (18) becomes 

(20) 
If Eq. (20) is simulated using a digital computer, it is seen 

that the chosen filter effectively accomplishes the desired 
goal. Note that the sum of bj over all j produces the 
attenuation factor for E. In other words if all the filter 
weights summed to 0.2, the DC offset would be reduced to 
20% of its previous value. 

III. SIMULATIONS AND RESULTS 

Figure 1 shows the calculated and simulated data using 
four weights with D,=F=1.0, eO.0, ~ 0 . 7 ,  and v=0.3. The 
graphs show the actual calculated beam position at the kicker 
(calculated) versus the filtered prediction at the kicker 
(simulated). This result is typical in that small but significant 
errors result by using weights defined by Eq. (19). These 
errors can be eliminated by introducing an additional 
multiplicative constant, B, for each coefficient and requiring 
that the calculated and simulated results be equal. In 
particular, letting n=O, D,=F=1.0, E,=O.O, and $=+. one gets, 
using Eqs. (14), (17), and (20). 

(21) 
Expanding this and requiring that this be m e  for any K and 
any $, one gets three equations: 



N C B ~  cos2(27cvi)=-, 
2 
N C B~ sin2 (27cvi) = - 
2 ’  

Bi sin(47r~i) = 0. (24) 
Thus for N=2, Eqs. (5 )  and (6) are used for calculating the 
weights. For N=3, Eqs. (22), (23) and (24) are used. For N>3, 
the above expressions, combined with additional conditions 
wauld be used. In particular, for N24 one can impose the 
additional condition that 

CBi cos( -2mi+~-  7c r)=O. (25) 

This assures complete DC offset cancellation. Figure 2 
compares the calculated and simulated results for N=4 after 
solving for the B;s from Eqs. (22). (23), (M), and (25). As 
expected, there is complete overlap. 

As discussed earlier, the largest expected tune spread will 
be about 2% of the fractional tune. Figure 3 was generated by 
using the same weights as in Figure 2 (v=O.3), but letting 
v=0.3#8% for generating the measured positions of the 
bunch (for the simulated data). The ratio of the sum of the 
magnitude of the difference at each turn, over the sum of 
magnitudes is 6%. 
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Figure 1. Calculated versus Simulated Data (4 filter weights) 

IV. CONCLUSIONS 

single filter design can accommodate both transverse 
longitudinal damping. 
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Figure 2. Corrected Calculated versus Simulated Data (v= 

Calculated versus Simulated Data (4 filter weights) 
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Figure 3. Corrected Calculated versus Simulated Data 
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Multi-tap programmable transversal filters are useful for 
calculating the required kick in damping systems. The larger 
the number of taps (or filter weights), the greater the 
flexibility. In particular, four or more taps can be used to 
assure the elimination of the detrimental effects associated 
with DC offsets. Effects of noise and digitizing granularity 
can be reduced. Large tune shifts can be accommodated. A 
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