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Abstract. FElectron impact ionization of the hydrogen atom is the prototypical
three-body Coulomb breakup problem in quantum mechanics. The combination
of subtle correlation effects and the difficult boundary conditions required to
describe two electrons in the continuum have made this one of the outstanding
challenges of atomic physics. A complete solution of this problem in the form of a
“reduction to computation” of all aspects of the physics is given by the application
of exterior complex scaling, a modern variant of the mathematical tool of analytic
continuation of the electronic coordinates into the complex plane that was used
historically to establish the formal analytic properties of the scattering matrix.

This review first discusses the essential difficulties of the three-body Coulomb
breakup problem in quantum mechanics. It then describes the formal basis of
exterior complex scaling of electronic coordinates as well as the details of its
numerical implementation using a variety of methods including finite difference,
finite elements, discrete variable representations, and B-splines. Given these
numerical implementations of exterior complex scaling, the scattering wave
function can be generated with arbitrary accuracy on any finite volume in the
space of electronic coordinates, but there remains the fundamental problem of
extracting the breakup amplitudes from it. Methods are described for evaluating
these amplitudes. The question of the volume-dependent overall phase that
appears in the formal theory of ionization is resolved. A summary is presented of
accurate results that have been obtained for the case of electron-impact ionization
of hydrogen as well as a discussion of applications to the double photoionization
of helium.
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1. Introduction

Electron-impact ionization of an atom is one of the most basic, and important,
problems in atomic collision physics. From a theoretical viewpoint, it is also one
of the most difficult. Indeed, it is only within the past few years that the simplest
Coulomb three-body breakup problem - electron-hydrogen atom ionization - has been
reduced to practical computation in the sense of having a formalism and the associated
numerical algorithms that allow the calculation of the relevant physical quantities to
any desired accuracy. The central difficulty that impeded progress on the problem of
three-body breakup in Coulomb systems (both collisional breakup or “e,2e” and double
photoionization or “y,2e”) is the cumbersome asymptotic form of the wave function
that emerges from a formal treatment of the problem. How that formal difficulty
was circumvented is the subject of this review. Before we describe that development,
however, it is useful to begin with a short summary of the formal theory, along with
a brief description of other theoretical approaches to the problem, all of which helped
to motivate the methods that form the main subject of this review.
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1.1. Formal theory of ionization

While perturbative treatments of the problem have been used since the early days
of quantum mechanics, a formal theory was not developed until the 1960s, when
Peterkop [1] and Rudge and Seaton [2, 3] independently deduced the appropriate
boundary conditions for electron-hydrogen atom ionization to be:

Ut (ry,rp) = Uo(ry,rp) + T (ry 1y) (1)
with
(sc)+ ~ A i/"ﬁ3 . C(TAl "I"AQ,C!)
T (e, 1) — —f(F1,72, )4 [ — expi(kp + —————In(2xp)) (2)
p—00 P K

where ¥g(rq,rs) is the unperturbed wave function describing the initial state, f is the
ionization amplitude and the hyperspherical coordinates are defined by p = (r7+73)'/?
with @ = tan~!(ry/r2), and k is related to the total energy by E = £2/2.

Knowledge of this asymptotic form, however, has yet to provide a practical
path for numerical computation. Firstly, Eq.(2) is only valid in the far asymptotic
region and only when all three charged particles are well separated. Moreover, the
coefficient ((# - 72, @) of the logarithmic phase depends on the distances as well as
the angle between the two ejected electrons. The most severe problem, however, is
the fact that Eq.(2) is not separable in spherical coordinates, and is therefore much
more cumbersome to apply to numerical calculations which are perforce done in that
coordinate system. As a consequence, no one has yet applied Eq.(2) to the numerical
solution of the Schrédinger equation for the ionization problem.

The formal theory of Peterkop and of Rudge and Seaton poses another challenge
to computation. The ordinary expression for evaluating the amplitude, starting from
the scattering wave function that solves the Schrodinger equation, does not apply,
because defined in the usual way it would have an infinite phase associated with
integrating an expression with logarithmic phases over an infinite volume. Instead
the ionization amplitude for producing electrons with momenta k; and ks, is given
by [1, 2, 3]

Flks, ko) = —(2m)P 2B k) / / UH(H - B)g(—ki,2)$(—ko, 22)drrdra, (3

with effective charges in the one-body Coulomb functions, ¢(—k, z) depending on both
the energy and direction of ejection of each electron, chosen to satisfy the so-called
Peterkop condition,

21 29 1 1 1

P S v @
with

A(ky, ko) = 2[(21/k1) In(k1 /) + (22/k2) In(k2 /£)]. (5)

A formal theory of ionization can also be based on the so-called plane-wave form

of the wave function, 111,;1, ko i Which the initial channel is one where both electrons
are in the continuum. The leading term in the asymptotic expansion of Ui &y 3AIN
for the case where all particles are well separated, was first obtained by Redmond [4]:

- i(ki-r1+ka-re
l:[’Ii:l,kz (1‘1,1‘2) ~ € ( )

X ei/kl 1n(k1 T1+k1-1‘1)ei/k2 1n(k27‘1+k2-1‘2)

x g i/ |k1—ka|In([ki—kz||r1—r2|/2)+ (ki —k2)-(r1—12)/2) (6)
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Brauner, Briggs and Klar [5] subsequently showed that the Redmond wave function
is the asymptotic form of what is now generally referred to as the 3C' wave function:

= i(k1-r1+ko re
lI’khkz(rl’rz) ~ e ( )

X C(=1/k1,k;,11)C(=1/ka, ky,r2)C(1/k12,k12/2,112) (7)
where
C(a,k,r) =T (1 —ia)e "2 F (io; 1; —ikr — ik - 1) (8)

The 3C' wave function has spawned a series of sophisticated distorted wave
calculations, which have been used to study ionization cross sections at intermediate
and higher energies, with varying degrees of success. Much of this work has been
reviewed by Lucey, Rasch and Whelan [6] and by Jones and Madison [7].

The formal theory of three-body Coulomb breakup continues to be an active area
of research. Kim and Zubarev [8], building on the work of Alt and Mukhamedzhanov
[9], have shown that the 3C' wave function is asymptotically correct in all asymptotic
domains, i.e. it is the leading term in the asymptotic expansion of ¥, . ~where
any two particles are far apart. More recently, Kadyrov et al. [10] have established
an integral relationship that connects ¥+ to lIl,;h . Since the asymtotically correct
behavior of ¥ , is known in all domains of coordinate space [9, 11], they were able
to use this relationship to derive the asymptotic behavior of ¥+ in regions where the
Peterkop wave function Eq.(2) is invalid.

While many of the gaps in the formal theory have been filled, it is clear that we are
still far from being able to implement the formal theory in a practical calculation, i.e.
from using the asymptotic form of the exact wave function as a boundary condition for
solving the time-independent Schrodinger equation. At the very least, a partial-wave
decomposition of the full three-body wave function would be required and this has yet
to be accomplished.

1.2. Practical approaches to ionization

Practical approaches to an ab initio treatment of ionization have either employed
approximate ionization boundary conditions or have been designed to circumvent them
entirely. Fxterior complex scaling, which is the central topic of this review, falls into
this latter category. Several other methods can be cited in the same context.

In the hyperspherical R-matrix method with semiclassical outgoing waves [12],
the time-independent Schrédinger equation is solved without detailed specification of
three-body Coulomb bounday conditions by merging two different approaches: an R-
matrix treatment of the two-electron system in the vicinity of the nucleus along with
a semiclassical description of the evolution of the system in the asymptotic region.
This method has been successfully applied to the (+,2e) problem.

There have also been successful computational approaches to the three-body
Coulomb problem based on solving the time-dependent Schrédinger equation, such
as the “time-dependent close-coupling” approach of Pindzola, Schultz, Robicheaux
and coworkers [13, 14]. In that approach, which has been applied to both (e,2e) and
(7,2e) problems, a wave packet is fired at the target atom and the time-dependent
Schrodinger equation describing its dynamics is solved in a close-coupling formulation.
There is thus no ambiguity about the boundary conditions, since the time-dependent
Schrédinger equation is solved as an initial value problem.
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1.8. Approzimate two-body boundary conditions

A broad class of applications have been carried out by employing approximate two-
body boundary conditions in solving the time-independent Schréodinger equation above
the ionization threshold. Without attempting anything like an exhaustive review, we
will briefly describe work on extending the close-coupling (CC) formalism, which for
over 40 years has formed the basis for most ab initio work on calculating atomic
excitation cross sections in low-energy electron scattering, to treat ionization.

In the close-coupling method, the internal target states are used as a basis for
expanding the full wave function. The target-state basis must obviously be truncated
in actual computations and early applications were limited to the use of a few
spectroscopic states. In the late 1960s, it was learned that convergence of excitation
cross sections could be accelerated by including positive-energy “pseudostates” in the
expansion [15], typically obtained by diagonalizing the target Hamiltonian in a basis
of square-integrable functions. For the close-coupling expansion to “converge”, the
target states must approach completeness in the interaction region. That this could be
achieved in a practical calculation was first demonstrated for the e-H problem by Bray
and Stelbovics [16] who showed that, by systematically increasing the pseudostates in
a “convergent close-coupling” (CCC) scheme, the unphysical structures that typically
appear in the cross sections near pseudostate thresholds eventually disappear. They
also demonstrated that the sum of the excitation cross sections into positive-energy
pseudostates gives an accurate representation of the total ionization cross section.
Similar results have since been achieved with other close-coupling methods, such as
the R-matrix method [17].

The success of these methods in computing total ionization cross sections is
ultimately tied to the completeness of the underlying basis and the unitarity of
the close-coupling formalism. Convergence of the total ionization cross section is
guaranteed by convergence of the discrete excitation cross sections, since the former
can be obtained by subtracting the latter from the total cross section, which in turn
can be obtained using the optical theorem. The computation of differential ionization
cross sections, however, is not guaranteed by the underlying formalism and additional
assumptions have to be made. In the CCC method, for example, one assumes that the
amplitudes for exciting individual positive-energy pseudostates can be equated with a
true ionization amplitude by simply renormalizing the pseudostate to the true target
continuum function [18, 19]. When this method was implemented, however, it was
found to yield an asymmetric single differential cross sections (SDCS) that oscillated
as a function of energy and that did not converge with increasing number of target
pseudostates [20, 21].

The SDCS, or energy-sharing cross section (do/de), yields the total ionization
cross section when integrated over the energy of an ejected electron:

E
e = [ 9)

where E is the energy relative to the ionization threshold. Since the electrons are
indistinguishable, the SDCS should be symmetric about E/2. This property does not
follow automatically from the close-coupling formalism, even though the underlying
wave function is antisymmetric, since the two electrons are treated inequivalently, one
through discretization, the other with two-body scattering boundary conditions. It
was observed that the SDCS cross sections computed using pseudostate excitation
amplitudes tend rapidly to zero when the pseudostate energy is greater than E/2.
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This led Bray [21] to hypothesize that a close-coupling expansion that used an infinite
number of pseudostates would produce an SDCS equal to the correct value for € < E/2
and zero for € > E/2. If the true SDCS were nonzero at E/2, then the resulting step
discontinuity at E/2 would produce the observed oscillatory behavior in finite basis
set close-coupling calculations.

Two mathematical studies have attempted to explain the peculiar behavior
observed in the SDCS computed in close-coupling calculations. Stelbovics [22] has
analyzed the Temkin-Poet (TP) model, which simplifies the full e-H problem by
treating only zero angular momentum states. The Schrodinger equation in this model,

d? d? 2

(@ + d_y? + W + 2E)\Il(a:,y) =0, (10)
is separable in the regions z > y and z < y, so the exact solution can be constructed
from products of [ = 0 free states and hydrogenic states. By comparing the asymptotic
behavior of the exact solution with the form used in a close-coupling calculation, he
was able to show that the CCC result should converge, but only at the point E/2,
to give half the correct amplitude, or one quarter the true cross section, as had been
empirically observed [21]. At other energies, the CCC wave function will generally have
an asymptotic form that is incompatable with that of the exact wave function. Thus
Stelbovics was able to explain Bray’s step discontinuity hypothesis for the Temkin-
Poet case. Stelbovics speculated that the full e-H problem might show the same
behavior, but the arguments he employed were specific to the Temkin-Poet model.

Rescigno et al. [23], using stationary phase arguments, were able to extend
the demonstration of the step discontinuity behavior to the full three-body breakup
problem, but unfortunately only for cases involving short-range potentials. They
also showed how a wave function that satisfied the proper asymptotic behavior for
breakup would nonetheless yield an anomolous step discontinuity behavior when it was
projected onto a set of discrete, box-normalized states and when the breakup cross
sections was computed via the CCC prescription. They speculated that, since this
behavior was obtained from an asymptotically correct wave function, the anomolous
behavior might be the result of the way the ionization cross section was extracted from
the calculation rather than a problem with the wave function itself. This idea has since
been tested in an R-matrix calculation for the Temkin-Poet model by Pindzola, Mitnik
and Robicheaux [24]. The step behavior in the SDCS was successfully eliminated and
a symmetric cross section was obtained, but the oscillations in the SDCS persisted,
indicating that the reformulated procedure for evaluating the SDCS is only a partial
remedy for errors introduced by using approximate two-body boundary conditions to
generate the wave function.

The empirical evidence that something like the step discontinuity hypothesis
pertains to the full problem is strong, despite the absence of a rigorous demonstration
of its veracity. The magnitude of the oscillations in the SDCS that are observed for
e-H evidently diminish with increasing energy [25] and do not pose a problem above
~55 eV. At lower energies, where the oscillations become more pronounced, the true
SDCS is relatively flat, so that a knowledge of its value at one point, along with the
total cross section, makes it relatively easy to estimate its value at all energy sharings.
Alternatively, Scott et al [26], employing the intermediate R-matrix method with very
large expansion basis sets and very large box sizes, found they could obtain the most
accurate values for the L = 0 component of the full SDCS by energy-averaging the
results of a number of R-matrix calculations, excluding points near E/2.
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In light of these practical difficulties with CC methods that employ approximate
two-body boundary conditions, it is clearly be desirable to find a way around the need
for explicit enforcement of asymptotic boundary conditions from the outset. The
method of exterior complex scaling does precisely that.

2. Complex exterior scaling

2.1. The origins of complex coordinate scaling

Although the modern uses of complex coordinates are in numerical computation, the
idea was invented for a very different purpose in formal scattering theory. In fact the
origins of the idea of complex coordinate scaling in the Schrédinger equation are in the
early efforts which established the analytic properties of the S-matrix in the complex
momentum and energy planes, most notably in the work Regge [27, 28]. The notion
of scaling the coordinates of the particles by a complex phase factor,

r — et (11)

appears, for example, in paper in 1962 by Regge and coworkers [29]. Later the idea
was very much generalized in a formal context and extended to systems of particles
interacting via Coulomb potentials by Aguilar and Combes [30], Simon [31] and by
Balslev and Combes [32]

A central result of that work is the understanding that the spectrum of the
Hamiltonian is distorted in a particular way, shown in Fig. 1, that ultimately
proves useful in numerical calculations. The continuous spectrum associated with
each threshold is rotated downwards in the energy plane by 27, discrete resonance
eigenvalues are revealed, and the bound state energies are unchanged. The
disclosure of the resonance eigenvalues arises because under complex scaling, their
pure outgoing form, es(r) = exp(ikresT), becomes exponentially decaying,
exp(i|kres e~ ¥reim) =20, if the scaling angle, 7 is large enough that 7 — a > 0,
where « is the argument of k,.;. Therefore, under complex scaling the resonance
wave function can be rendered square integrable. Following the pioneering work in
1974 of Doolen, Nuttal and Stagat [33], this fact led to the widespread use of complex
scaling in direct calculations of resonance energies of various kinds, in a literature that
has been reviewed elsewhere [34], and continues, for example, with the highly precise
calculations of Ho [35, 36].

However it was the earlier work Nuttall and Cohen [37] in 1969 that extended
these ideas to the direct computation of scattering amplitudes, and did so first in the
context of three-body problems above the breakup threshold. Unfortunately, complex
scaling could only be applied by those original methods to the calculation of scattering
amplitudes for short-range potentials (finite range or decaying at least exponentially
as the coordinates increase). That remained the state of the art for decades after,
until modern applications of the idea of exterior complex scaling that we will discuss
in this topical review.

In the context of the direct calculation of resonance energies, another problem
arose in the first applications to molecular systems. The problem was that, in the
Born-Oppenheimer approximation, the nuclear attraction potentials were not analytic
under the original complex scaling transformation in Eq.(11). To avoid that problem
Simon [38] suggested making an exterior complex scaling (ECS) transformation on
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Figure 1. Exterior complex scaling: (a) Simple complex scaling (rotated

coordinates) and exterior complex scaling contours in the complex r plane, (b)
Application of exterior complex scaling to a two-electron system, (c) The spectrum
of the Hamiltonian of a multi-electron system, and therefore the analytic structure
of its Green’s function, in the complex energy plane under complex scaling of either
type.

the coordinates of the Hamiltonian,
r

r— .
{ Ro + (7‘ — Ro)e’"

where Ry defines the radius within which the wave function will be the usual function
of real-valued coordinates, and 7 is a scaling angle. This basic idea in fact appeared in
a less formal paper by Nicolaides and Beck in the previous year [39], but Simon showed
that the spectrum of the Hamiltonian changes under this transformation in exactly
the same way as under the original simple complex scaling transformation in Eq.(11).
Thus it was shown that ECS could be used for direct calculations of resonance energies
for potentials that are nonanalytic for values of the coordinates less than Rg.
However, at this point it was not at all apparent that the idea of exterior
complex scaling could be used for the calculation of scattering amplitudes for any
long-range potential, particularly for the calculation of breakup amplitudes for a

for r < Ry

12
for r > Ry (12)
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Coulomb system. To see how ECS has been developed over the past decade into
a powerful method for general scattering calculations we must address that problem
directly. One component of its solution is the fact that, unlike the simple scaling
idea in Eq.(11), ECS transformation in Eq.(12) provides a method for simultaneously
imposing outgoing wave boundary conditions while yielding the wave function as a
function of real coordinates in the region where the amplitudes, or outgoing flux, can
be calculated. Note that in an exact or converged calculation the solutions of the
Schrédinger equation for r < Ry do not depend on 7, because in that case exterior
complex scaling simply produces the exact solution with the coordinates taken on a
particular complex contour [38].

As we will discuss below, setting  # 0 while imposing the boundary condition
that on the ECS contour the wave function vanish as r — oo effectively imposes
outgoing scattering boundary conditions on the exact solution, and that is why the
ECS approach provides a path to compute collision amplitudes. It is this property
that makes ECS particularly useful in cases where the asymptotic boundary conditions
make traditional methods difficult to apply.

To understand the ECS method as applied to atomic systems, we first should
recall the basic formulation of ECS from earlier treatments of the subject [40, 41]. In
particular we must understand the role of the discontinuity at r = R of the Jacobian
of the ECS transformation in Eq.(12). The easiest way to see the origin of that
discontinuity is to first examine the case of arbitrary “smooth” exterior complex scaling
where that discontinuity does not appear, which we do briefly in Section 2.2 below,
and then specialize to the present case of “sharp” exterior scaling as we do in Section
2.3. This discontinuity is the central question for any basis or grid representation
to represent the Schrodinger equation under the ECS transformation. Addressing it
correctly is the key to constructing a numerically robust implementation. Once we
have dealt with that issue, we will be ready to discuss the issue of the application of
ECS to long range potentials in Section 2.4.

2.2. Formulation of complex scaling for arbitrary complex coordinate contours

To begin, consider a one-dimensional radial problem for which we make a single-valued
and continuous, but otherwise arbitrary, complex transformation of the coordinate r
according to r — R(r). The operator, U, that performs that transformation on the
wave function v (r) is defined according to

Uy(r) = J(r)y(R(r)) (13)
where the Jacobian of the transformation is
dR(r)\ /?
J(r) = 14
n= (40 (1)
If the original Schrédinger equation is
Hi(r) = Exp(r) (15)
with
1 & 1(+1)
H=——— 1
2u dr? + 2ur? +V(r) (16)

then the scaled Schridinger equation results from a unitary transformation,
UHU Uy = EUy (17)
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in which the inverse of the scaling operator is given by

1
U= ——F—=9(R™" 18
v = Sy R ) (18)
and R~1(r) is the inverse of the function defining the complex contour.

We can represent the complex contour, R(r), in the general form suggested by
Kurasov et al. [41],

R(r) = / gy (19)

so that dR(r) = ¢(r)dr and the exterior scaling transformation is specified by requiring
q(r) to satisty the conditions

1 forr—0
q(r) = { (20)
e for r - o

In this way we can describe both “smooth” exterior scaling, in which R(r) is
continuously differentiable, as well as the “sharp” exterior scaling transformation in
Eq.(12). The transformed Schrédinger equation that results is

Ho(r) = E¢(r) (21)
where ¢(r) = ¥(R(r)) and the transformed Hamiltonian has the form
Br) = - [ L & _q0) i] + 04D v Rey  (22)
2p Lg(r)? dr? q(r)®dr] ~ 2uR(r)?

In a basis set expansion the idea is to expand the transformed wave function,
é(r), and not Utp(r) appearing in Eq.(13) which contains the Jacobian factor q(r)'/2,
in a set of square-integrable functions x,(r). The derivative portion of the kinetic
energy matrix elements is therefore defined according to

1 [ 1 & q(r) d
Ko ==3 [ xn(0) [qo«ww—q(r)%] xn(Pa(r)dr  (230)
]‘ o ! ]‘ !
Ko = 3 / X)X (1) (230)

where the second equality, which exhibits the fact that the kinetic energy matrix is
complex symmetric, comes from integrating by parts and using the fact that the x,,
vanish at the extrema of the integration range (or grid). The other matrix elements,
where the operator is just a function of R(r), are defined in the entirely obvious way,
with the potential matrix elements, for example, being given by the integral

Vin = / T WV (R xa(r)g(r)dr (24)
0

with the volume element ¢(r)dr. Thus the matrix representation of the Hamiltonian
is explicitly complex symmetric for any contour defined by q(r).

Now we are ready to turn to the conditions on ¢(r) and its derivatives at r = Ry
for the case of “sharp” exterior scaling in Eq.(12)
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2.8. “Sharp” Exterior scaling and the question of the discontinuity of the Jacobian

To use the exterior scaling contour originally defined by Eq.(12), we simply set the
function ¢(r) equal to

1 for r < Ry
ar) = { et for r > Ro (25)
With this definition the Jacobian
J(r) = q(r)'/? (26)

is obviously discontinuous because ¢(r) is discontinuous. The transformed wave
function ¢(r) = ¢ (R(r)) is always continuous, although its first derivative with respect
to r is not continuous because

3 501 = T (i) = gty () 1)
r dr

Note that the underlying wave function (%) is an analytic function of its argument, z,
and its derivative with respect to that argument, ¢'(z), is continuous in any direction
in the complex plane as demanded by the Cauchy conditions on the derivatives of
analytic functions of a complex variable. The only discontinuity in Eq.(27) is that of
q(r). With sharp exterior scaling, we always use Eq.(23b) to define the kinetic energy.

In every implementation of ECS using a basis set expansion it is exactly this
point that is critical, because the numerical convergence properties depend on the
correct representation of the wave function at r = Ry. Fortunately, as the list of
successful applications of ECS attests, it is generally not difficult to treat the the
discontinuity at the point Ry exactly. For example, in the implementation in terms of
the discrete variable representation and finite elements [42], we will point out below
that putting a DVR finite element boundary point at Ry and requiring only continuity
of the value of the function at that point gives the DVR basis the ability to represent
¢(r) with continuous value at Ry, but with discontinuous derivative. The result of
such a calculation is illustrated in Fig. 2. Other impementations describe the details
differently, but accomplish the same end [43].

In general, basis functions of compact support can treat the condition at Ry
ezactly, while complex analytic basis set expansions [40, 44], like expansions in
Slater or Gaussian functions cannot. The successful use of complex analytic basis
set expansions, for example Slater or Gaussian basis functions, with ECS generally
requires “smooth” exterior scaling in which ¢(r) is continuous and continuously
differentiable [45, 46]. Methods based on grids or on the use of basis functions of
compact support, however, can treat the “sharp” exterior scaling of Eq.(12) exactly.

2.4. Making complex scaling work for long range potentials

To understand the question of how the range of the potential affects the application of
complex scaling of the coordinates in the Schrédinger equation, we can continue with
the single particle example of the previous sections. First we express the scattering
wave function at the energy, E = k? /2y, in a form that we will use in every application
of complex scaling to the breakup problem we will discuss in this review,

Pt =9 + 1o (28)
where g defines the incoming boundary conditions of the scattering problem. In a one
particle example we can take 1o(r) = ji(kr), where j;(kr) is the Ricatti-Bessel function
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[47]. Then we get the driven Schrodinger equation that is the typical starting point
for exterior complex scaling calculations, which we can specialize to a one-particle
example,

(E - H)Y* = (H — E)to (290)
(B — H)y*(r) = V(r)ji(kr) (299)

In Eq.(29b) the Hamiltonian is that in Eq.(16). We now seek the solution for 1)*¢
satisfying outgoing boundary conditions. If the the potential, V' (r), diminishes at
large r faster than 1/r?,

W*(r) — Ahf (kr) (30)

where A is the scattering amplitude and h;" (z) is the outgoing Ricatti-Hankel function
[47].

Now, if we try to solve Eq.(29b) on the original rotated coordinates contour in
Eq.(11), the right hand side becomes V (rei)j;(krei"). Because the Bessel function
has the asymptotic form sin(kre® — I7/2), it diverges exponentially as a function of
r on the contour. The right hand side thus diverges, unless the potential is of finite
range or is exponentially bounded with an exponent sufficiently large to overcome
the exponentially diverging Bessel function on the contour. Although the problem
is expressed differently by Nuttall and Cohen [37], who instead focus on the formal
expression for the T-matrix,

T = lim (¢o|V + V(E — H + ie) "' Vtho) (31)

the argument is exactly the same, and it limits the utility of ordinary complex scaling
in this context.
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Figure 2. Scattered wave function for the potential V = —3e™" under exterior

complex scaling with 7 = 40° showing Re[¥*°] (solid black) and Im[¥*¢] (solid
grey). Right panel shows derivative discontinuity at r = R (dashed line).
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However, Rescigno et al. [40] showed how ezterior complex scaling can overcome
this difficulty. Consider Eq.(29b) on the exterior complex scaling contour in Eq.(12).
Once again the right hand side evaluated on the contour, V(R(r))j;(kR(r)) diverges
for large r, but it begins to do so only for » > Ry. That is a key point, because it
allows the following procedure. If we replace the original potential (on the right hand
side) by the finite range potential, Vg, (r), defined by truncating V(R) at Ry,

Vio (1) = { Vir) for r < Ry

(32)
0 for r > Ry

we can use Eq.(29b) with exterior scaling to solve for ¢ (r) from

(E — H)Yg, (r) = Vi, (r)io(r) (33)
because right hand side no longer diverges. 1 (r) still satisfies pure outgoing wave
boundary conditions, and exterior complex scaling converts the pure outgoing wave
boundary condition to

b5, (R() — 0. (34)

This equation is true because the Ricatti-Hankel function, like any outgoing wave
solution of the one- or many-particle Schrédinger equation, goes to zero in the upper
half r-plane if it is associated with a real-valued momentum.

Thus we can solve for 13 (r) by representing Eq.(33) on a finite basis or grid,
applying the boundary conditions that the solution vanish at » = 0 and » — oo (or
at 7 = Tmaz, the maximum value of 7 on the grid), and solving the resulting linear
equations. In Section 3 we will discuss in detail how to implement such a calculation.

The key point here is that such a calculation yields ¢ (r) as a function of real
r for r < Ry. In a practical calculation we will make use of that wave function for
r < Ry to extract the scattering amplitudes from it. Thus we have the important
property of the solution of the ECS version of Eq.(33) that

Vi (RO) > 4 (R() (33)

for r < Ry and thus ultimately for all .

In a more formal way, we can express this result as follows. Exterior
complex scaling of the driven Schrodinger equation, Eq.(29b) and its many-particle
generalization, produces the correct physical solution for 1%, if we first take the r — oo
limit, use ECS to apply the outgoing wave boundary conditions, and then take the
Ry — o0 limit. The order of the limits matters, because it allows the avoidance of
the problem that originally limited the application of ordinary complex scaling to the
calculation of scattering amplitudes for long-range potentials.

In a practical calculation, the value of Rg can be increased until the calculation of
scattering amplitudes and cross sections converges to arbitrary accuracy. That value
of course depends on the energy, with lower values of the energy requiring large values
of Ry, just as calculations by any method near threshold require the representation
of the Schrodinger equation on a larger spatial region. In any case, the scattering
amplitude can easily be extracted in the region 7 < Ry from its definition in Eq.(30).
The methods for doing that for a multi-electron problem will be discussed below, but
for our simple example the scattering amplitude is clearly just,

A= GV () e () (360)
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= k)| - B (1) (361
= — W k), () o= (36¢)

where in Eq.(36b) the subscript Ry denotes integration over the “volume”, r < Ry,
and in Eq.(36¢) W(a,b) = a'b — b'a denotes the Wronskian with respect to r. One
should also note that there is a “two-potential” version of this formalism [48] that
would, for example, allow the use of a Coulomb potential as a reference potential in
electron-ion scattering.

We now turn in Section 3 to the practical issues of representing Eq.(29a) in one
or more dimensions on the exterior complex scaling contour R(r). Note that it is to
“sharp” exterior complex scaling, Eq.(12), that the arguments above about the order
of the limits most directly apply, and, as we will see, “sharp” ECS has entirely benign
numerical properties as well.

3. Numerical implementations of exterior complex scaling

Although it might seem at first glance that “smooth” exterior complex scaling should
be numerically better behaved than “sharp” ECS, in fact the opposite is true. The
issue revolves around the question of the representation of the discontinuity in the
derivative of the wave function for sharp ECS, illustrated in Fig. 2, versus the
representation of the smoothed version of that discontinuity in smooth ECS.

It has been our experience [40] that smooth scaling can give rise to errors that
can depend sensitively on the way in which the contours are smoothed. The point of
“smooth” scaling is to make it possible to implement the method with analytic basis
sets [44, 45, 46] such as Gaussian or Laguerre basis functions, although “smooth” ECS
inevitably complicates the evaluation of the matrix elements. More importantly such
implementations rely on the analytic basis functions to represent the rapidly changing
derivative where the ECS contour “turns the corner” into the complex plane. For that
reason additional numerical error is introduced by this approach that we have found
difficult to eliminate.

On the other hand, if we choose to implement ECS by using either a numerical
grid method or with basis functions that have compact support, then the derivative
discontinuity at Rg that occurs with “sharp” exterior scaling can be handled exactly,
provided one correctly chooses Ry to coincide with a grid point. Numerical errors
are generally much better controlled with such approaches [40]. It is for this reason
that we have chosen in all our implementations of ECS to use grid-based methods and
“sharp” exterior scaling.

The implementations we will discuss in this section are ECS approaches that have
been used for the Coulomb breakup problem: 1) finite differences, 2) the discrete
variable representation combined with finite elements, 3) B-splines, and 4) direct
numerical integration. For multiphoton ionization in the context of Floquet theory,
Chu and coworkers [43] have very successfully made use of “sharp” exterior scaling in
yet another implementation.

The task of the numerical implementations of ECS is to make a finite
representation of Eq.(29a), and generally that representation will lead to linear
equations for the the coefficients that define 1*¢. In methods involving a basis set
expansion (with compact support in these examples) we require matrix elements of
the kinetic energy, of the potential energy (or any local function of the coordinates),
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and of the overlap if the basis is nonorthogonal. These matrix elements are given
by the appropriate versions of Eq.(23b) and Eq.(24) with ¢(r) defined as in Eq.(25).
Most often the matrix representation of the Hamiltonian will be complex symmetric
as it is in the discrete variable representation and B-spline methods described below,
although as we will see in the case of finite differences, that need not be the case.

3.1. Finite differences

The most obvious way to implement exterior complex scaling is with finite difference
approximations. To do so we choose a grid of points in r with one of the grid points
r; chosen to be equal to Ry. The complete complex finite difference grid is then
the set of points, R(r;), and thus lies on the contour. On the entire ECS contour
the potential can be simply represented by its values, V(R(r;)). The kinetic energy
requires considerably more care, however.

Normally we speak of a “stencil” with 2p + 1 points in r (r_p,r_pq1,---,7p) for
the finite difference approximation to the second derivative. The familiar three-point
formula for the second derivative would correspond to a stencil with p = 1. At most
points on the real and complex portions of the grid, ordinary finite difference formulas
for the derivative will apply. However, consider the points where the stencil straddles
the point Ry where the complex part of the ECS contour begins. In that case, if we
are taking points equidistant along the contour, points to the right of Ry are given by
Ry + jAe™ while those to the left of Ry are given by Ry — jA, where j is an integer.
For these cases we must make use of formulas for unequally spaced points, because
the cancellations that yield the usual finite difference formulas for derivatives require
that the steps be taken with the same magnitude and phase.

To derive general formulas for those few cases where the stencil overlaps the
point Ry, we can proceed by first writing the standard approximation to the function
in terms of Lagrange interpolating polynomials [49].

$(r) = 3 L)) + Rap(r) (37)

where the Lagrange interpolating polynomial is defined by

N map(r)
) = e, )
_ (r=rp) e r=ric)(r = riga) - (r = 1p)
C(ri=rep) o (ri = i) (ri = riga) - (ri =) (35)
with
mop(r) = H (r—ri) (39)

and where the remainder term, Rop,(r) is given by

Y@+ (¢)
(2p+1)!
Now to derive any finite difference approximation to the second derivative that we
might require, we merely differentiate the formula in Eq.(37) and evaluate the result

Rap(r) = map(r) r_p < (<rp (40)
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at the central point, ro (for higher orders, a task most easily and safely accomplished
with one of the standard computer algebra packages).
" " d2
o =" (ro) = 2 "),—,, (41)
The derivative of the remainder term gives the error estimate.
Applying this procedure to the simplest case, p = 1 we get the three-point finite
difference formulas that apply to this case,

i = % (j-1 = 205 + 1) + O(A?) (420)
W = (2 Yn_1 — 2e” M, + ﬂ¢ ) + O(A)(42d)
"nT A2\ (1 tem) "t " ety
—27
Y = eA—zn (Ym-1 = 2m + Pmi1) + O(A?) (42¢)

where Eq.(42a) applies on the real part, Eq.(42b) (incidentally, not symmetric with
respect to the coefficients of 4,1 and v,41) applies at the point 7, = Ry, and
Eq.(42¢) applies on the complex part of the ECS contour. One immediately sees a
critical drawback of the finite difference approach. While the error is second order at
all other points, the error in the second derivative at the critical point 7, = Ry is first
order in the stepsize, A. In general, the error in an n-point formula will be one order
lower for those points where the stencil overlaps the point Ry than elsewhere on the
grid.

For that reason higher orders are essential in practical calculations, and a seven-
point stencil was used when the first large-scale implementation of the finite-difference
approach for ECS was applied to electron-impact ionization of the hydrogen atom
[50, 51], and Baertschy et al. [52] give explicit formulas, and error estimates, for the
necessary derivative formulas. It should be noted that even when using three-point
finite difference for the second derivative, the discontinuity in the first derivative in
Eq.(27) is represented exactly in a numerical calculation by the corresponding two-
point formula for the first derivative.

The finite difference method has an advantage over most basis set, or “spectral”,
methods in that it involves a trivially simple diagonal representation of the potential.
However since higher order finite difference is necessary for accurate calculations,
spectral methods which lead to more compact representations of the wave function
and therefore smaller sets of equations, are generally preferable for implementing ECS.
A spectral method that preserves the advantage of a diagonal representation of the
potential, while producing a much more accurate representation of the kinetic energy
is the finite-element discrete variable representation (FEM-DVR) approach to which
we turn next.

3.2. Finite Elements and the Discrete Variable Representation

The discrete variable representation (DVR) [563] combines a high order treatment of
the kinetic energy operator in a polynomial basis with the advantage of a diagonal
representation of the potential operator, i.e., one that does not require the computation
of matrix elements of the potential. The DVR was combined with the finite elements
method (FEM) to allow the treatment of exterior complex scaling by Rescigno and
McCurdy [42], and this approach arguably provides the most efficient implementation
of ECS for multielectron systems to date. In a multielectron problem the electronic
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repulsion potential, 1/|r; — r;|, presents a computational challenge to any numerical
method, but as we will show below, the finite-element method with discrete variable
representation (FEM-DVR) approach provides a particularly efficient representation
that is effectively diagonal. The FEM-DVR approach is therefore far superior to
the earlier efforts to make use of the finite-element method for ECS based on
nonorthogonal polynomial basis functions [54, 55].

The DVR that we employ takes the analysis of Manolopoulos and Wyatt [56] as
its point of departure and uses Langrange interpolating polynomials with mesh points
derived from a Gauss-Lobatto quadrature. Gauss-Lobatto quadrature is similar to the
more familiar Gauss-Legendre quadrature, both of which approximate integrals as,

/b F(z)dx ~ i F(z;)w; (43)

In Gauss-Lobatto quadrature, two of the points are constrained to coincide with the
end points, and that means that Eq.(43) can be made exact when F(z) is a polynomial
of degree < 2n—1. On the interval [a, b] one can define normalized DVR basis functions
as

) _ ._1/2 T —xj
f’l(w) - wz H x; — IL']' (44)
JFi
These functions have the property, when evaluated at the quadrature points, that
fz'(ivj) = ‘si,j/\/wi (45)

and they are thus orthonormal under Gauss-Lobatto integration,
b n
| @ h@ds = Y fio s =5, (46)
a k=1

Since Gauss-Lobatto quadrature explictly includes the end points as quadrature
points, it is possible to combine this particular varitey of DVR with the finite-
element method. In the FEM-DVR approach we divide the ECS contour for the
radial coordinate of each electron into one-dimensional finite elements with one of
the boundaries coinciding with the point Ry where the real and complex parts of
the contour join. In each element we use the same order, m, of Gauss-Lobatto
quadrature. For each independent variable, r, (radial coordinate of an electron) we
choose a grid of N nodes, (), that consists of the union of all the Gauss-Lobatto
mesh points of the separate finite elements, and we arrange them in ascending order,
0<r®D <« p@ « ... <« p@),

We then define a set of DVR functions in each interval, in a notation where
fI(r) refers to the ith DVR function in the mth element. We can impose continuity
conditions across elements by combining the end-point functions on adjacent intervals
into single “bridging” functions, x;(r),

xi(r) = [fa(r) + fi ()] [/ wi, +wi™ (47)

Thus we can impose the boundary conditions that the wave function vanish at the
grid boundaries by excluding the basis functions centered on the first and last nodes.
On the real part of the ECS countour, Eq.(44) and Eq.(47) apply as written. On

the complex part of the contour these equations are modified to reflect integration
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along the contour, so that beyond the point ry we have

f;(r) = 8jn/\Jwjetn (48)
xi(r) = [fi(r) + fiT1 ()] /A (Wi, + with)ein (49)

One basis function remains to be defined, the bridging function associated with the

finite element boundary at " = r7"*! = Ry, and that function is

Xm(r) = [£7(r) + fH(0)] [y wi + wi™* el (50)

We can now arrange all the FEM-DVR functions, including the bridging functions,
into a single basis {¢1(r), -, dn(r)}, where each function is associated with a mesh
point, 7(9. The FEM-DVR basis is illustrated in Fig. 3, where it is plotted over two
finite elements for a low order DVR. In this basis, the matrix elements of any one-body
potential are diagonal, regardless of which grid points, real or complex, are involved.

/0 T SV ()65 (r)dr = 51,V (r) (51)

The kinetic energy is not diagonal, however, and in the basis of the functions {¢;(r)}
has a blocked structure that can be deduced from the definitions of the FEM-DVR
basis functions [42]

Multi-electron problems present another difficulty because of the singularity of
the electronic repulsion potential, 1/|r; — r;|. For atomic problems, or in any case
where we make use of a single-center expansion basis, we define the three-dimensional
basis functions as products of our FEM-DVR radial functions and spherical harmonics,

@it (r) = i(r)Yem (0, ¢) (52)

1.5 T 1 Ll T T T

Figure 3. FEM-DVR basis plotted over two finite elements for 7th order Gauss-
Lobatto quadrature (solid curves). The central bridging function is plotted as a
dashed curve.
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The two-electron integrals we must compute are thus of the form

(®itymi (1) jesm, (r2)] o] [®regms (1) Pregm, (r2)) (53)

where the integrations are over both electronic coordinates. and are evaluated by
making a multipole expansion of the interelectron repulsion

Z i Pu(costha) (54)

|r1 —T2|

The angular parts of each integral can be done analytically, reducing the problem
to the evaluation of radial integrals. The generic radial integral that results in each
case has the form

TZ Tmaz Tmaz 7.6
<pB e pA> = [ [ pntr) o) (55)
> 0 0 rs

where the densities p4(r) and pg(r) are products of our radial FEM-DVR basis
functions

pa(r) = ¢i(r)dr(r) (564a)
pB(r) = ¢;(r)éu(r) (56b)
and rmq, denotes the end of the ECS contour.

Gauss-Lobatto quadrature is not valid for the integrations in Eq. (55) because
because it effectively expands the derivative discontinuity in the potential rt / r”l i
a basis of polynomials. Therefore replacing this potential with its values on at the
mesh points is a poor approximation to the integral. However we can restore the
validity of the underlying Guass quadrature if instead we apply the DVR to solving
Poisson’s equation for the potential due to the charge distribution corresponding to a
product of two of the FEM-DVR basis functions.

First we define the function y(r)

¢

Tmaz r
y(r) :r/o pa(r’) lil dr' (57a)

= /OT pa(t) (;)f dt + /Trmw pa(t) (E)Hl dt (57b)

t

so that the original integral can be written as a simple quadrature

rt rmas 1
<pB < pA> = [ o) ooy (58)
T> 0 'S

Differentiation of y(r) with respect to r shows that it satisfies the radial form of
Poisson’s equation

& I(1+1) _20+1
(52 - 2) v = -2 (59)
with the boundary conditions
y(0) =0 (60)
1 [Tmes
Wrmar) = — [ patt)ttdt = byt (61
maz J0 max

where in the last equality we performed the integral with Gauss-Lobatto quadrature
and used the properties of the DVR basis functions.
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The central idea now is to solve this equation by expanding y(r) in the same
FEM-DVR basis with which we are solving the Schridinger equation. However, our
FEM-DVR basis satisfies only the first of these boundary conditions. It is useful to
recall [57] that the radial Green’s function for Poisson’s equation satisfies

L+ 1) 20+1
(W‘ 2 )Tg(m’)=— (=1 (62)
and that on the interval (0,b) that Green’s function (for two-point boundary
conditions) is

V4 s

!
_T< rr

!
g(r,r') = (O e (63)

The second term in this Green’s function suggests the method we will use to solve
Eq.(59).

The first step is to seek a solution for y(r) that satisfies the boundary condition
y(0) = 0, but that in place of the correct boundary condition at r,,, satisfies
Y(rmaz) = 0. We expand that solution in the basis of FEM-DVR functions, which
satisfy the boundary conditions that they vanish at 0 and 7,44,

N
y )= Cnom(r) (64)
m=1

Substituting this expansion in Eq.(59), multiplying by one of the FEM-DVR, basis
functions from the left and integrating over r gives a matrix equation for the coefficients
Ch-

N

Tmas 1 On,i0i
TO € = (20 +1 / (1) = — (90 1 1) 2%k
2;% amOm = (QLH1) [ 6a(r) palr)dr = (26+1) 225 (65)
where the matrix, T,(fgn is defined by
fmas & +1)
0 — _ Z _
10 = [ o) (57~ V) bl (66)
Equation(65) has the solution
-1
[Tr(rf)i] dik
= (204+1) ————
Co= 201 0 (67)

-1
with [TT(,f’)z] denoting the m, i element of the matrix inverse, and so gives us the

function y(© (r).

To obtain a solution of Poisson’s equation that has the proper boundary conditions
we add a term which is a solution of the homogeneous equation corresponding to
Eq.(59). The term we add is an exact homogeneous solution, and is analogous to the
second term in the Green’s function in Eqs.(62) and (63).

Oy 4 T [T et
ym=y<m+ﬂﬂ/' pa(r)rdr (680)
0

max

’ ol 7® -1 4 THld ‘
=2 +1);¢m(r)[ ] T (68%)

. . 20+1
1V Wi Tmazx
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Now that we have a solution for y(r) satisfying the correct boundary conditions
in Eq.(61), we can substitute it back into the original expression for the two-electron

integral, Eq.(58), to obtain
PA> = <¢j¢l

¥4 ¥4
<PB
(26 + 1) (&) -1 rfrf
= (51'71(51',]“ _— [T ] + (70)

r
= T ¢i¢k> (69)
> >

rj/Briy/wi L7 rieas
The expression in Eq.(70) is the final result for the two-electron integrals in the

FEM-DVR basis. It has the remarkable property of being diagonal in the indices
corresponding to the FEM-DVR mesh points on the exterior complex scaling contour.

~1
It involves only the inverses, [Tj(’?] , of the kinetic energy matrices (times 2) in

one dimension corresponding to each ¢ value, which need only be calculated once, no
matter how many two-electron integrals need to be computed. Moreover it maintains
the accuracy of the original Gauss-Lobatto quadrature upon which the FEM-DVR
approach is based.

3.3. B-splines

B-splines have been applied to the ECS transformation by McCurdy and Martin [48]
and used in double photoionization calculations by McCurdy et al. [58]. To begin we
need the definition of the B-splines themselves as given for example by de Boor [59].
We specify a series of knots ¢; < t;41 in the coordinate, r, and the splines of order &
are defined by a recursion relation,

—t; _ t; — _
TN Bl 4 R T pEolgy (71)

Bk r) =
i) titk — tit1

tivk—1 — &
together with the definition of B-splines of order k =1

{1 for t; <r < tiy

Bl(r) =
i(7) 0 otherwise

(72)
Once the recursion is taken to third order (k¥ = 3) one has a set of the familiar (smooth)
quadratic splines. Higher orders provide more spline functions in the basis covering
successively larger numbers of knots as the order is increased. They also give more
continuous derivatives as the order is increased.

The basis of B-splines is entirely defined by the knots {t;}. These are built from
a grid in the r coordinate (the breakpoint sequence &;) by assigning a multiplicity
to each grid point (breakpoint). Thus the positions of the breakpoints coincide with
those of the knotpoints, but several knotpoints may coincide with a single breakpoint
when multiplicity is larger than one. In most applications, multiple breakpoints are
only used near the borders (e.g. at the origin to provide more flexibility in this region).
Thus the number of knotpoints is only slightly larger than the number of breakpoints.
Details of this technology have been reviewed at length elsewhere [60] and will not be
further described here.

What concerns us here is the question of how B-splines can be used to represent
the discontinuity of derivative at r = Ry, that is required for ECS. B-splines of order
k have continuous derivatives up to order k — 2. To represent a function that has a
discontinuous derivative of the form of Eq.(27) we define the splines as B¥ (R(r)). That
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is, put the breakpoints, & and therefore the knots, ¢; on the complex exterior scaling
contour, and place one of the breakpoints and its corresponding knot at t; = Ry. Then
B (R(r)) has a discontinuous first derivative with respect to r at r = Ry, because
the derivative of R(r) is discontinuous at that point. Furthermore the discontinuity
in the first derivative of all the B-splines that span the point Ry can be shown to be
exactly that of Eq.(27).

Fig. 4 shows the resulting B-splines, at order k£ = 8, and demonstrates clearly that
the derivatives of the B-splines are discontinuous. In the figure one sees that either
the real or the imaginary part of each B-spline shows a discontinuous slope. Another
interesting property of ECS B-splines is that the B-splines that do not straddle the
point Ry are real, whether they are on the complex part of the contour or not.

With the breakpoints defined on the exterior scaling contour, and with one of
them conciding with Ry, the matrix elements of one-body operators are simply sums
of the corresponding integrals between breakpoints. For the overlap matrix elements
or matrix elements of the potential V(r) we have simply

E141
Sn = Z/ B¥(r)BE (r)dr (73)
TRAY.
E141
Vo =3 [ BV @B (r)ar (74)
1 Ja
The kinetic energy (times 2) is given by
Pmas 2+ 1)
_ k a k
Ty = /0 BE (1) ( & -2 ) BE(r)dr (750)
0.6 _
041 -
¥ 02f |
m | 4
O _
-0.2 -
1 I 1 I 1 I 1 I 1 I 1
44 46 48 50 52 54 56

Figure 4. 8th order B-splines on the complex exterior scaling contour with
Rp = 50 and n = 40°. Heavy black lines are the real parts of the only complex
splines, and thin black lines are the real B-splines. Grey lines are the imaginary
parts.
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_ Z /El+1 (dBL“](T‘) dBﬁ(T) + Bfﬂ(”“ﬂ%”Bﬁ(T)) dr (75b)
1 1

dr dr

where & = 0 and &y = R(Tmqe) is the end of the complex exterior scaling contour. In
each interval in these sums, the integrals may be performed, for example, with simple
Gauss-Legendre quadrature, but only the integrals over intervals on which both B-
splines are nonzero are required. Each of the integrals appearing here is on a straight
line, the ends of which may be real or complex . The Jacobian factor, ¢(r), of Eq.(25)
is automatically included because the limits of the integrals are explicitly complex on
the complex part of the contour.

With these definitions of the matrix elements, we can construct the B-spline
representation of any one-electron Hamiltonian. It should be noted that the
Hamiltonian in the B-spline representation is a banded matriz, whose bandwidth
depends on the order of the B-splines.

To calculate two-electron integrals, analogous to Eq.(53), over B-splines we can
use the same strategy as in the case of the FEM-DVR. We can solve the corresponding
Poisson equation, following exactly the same logic as in the section 3.2, this time
expanding the solution in B-splines instead of DVR basis functions as described by
McCurdy and Martin [48]. The final result is similar to that of Eq.(70),

(b % pa) =2+ l)m,i UHT AU + iz QP07 (760)
where

U;i = /Ormw Bm(r)%pA(r)dr (76b)

UP = /0 . Bn(r)%pB(r)dr (76¢)

Qi = /0 T palt)ttdt (76d)

QP = /0 T pnttds (76¢)

and we have supressed the superscript denoting the order of the B-splines. The
densities can be simple products of B-spline basis functions

pa(r) = Bi(r)Bi(r) (770)
pp(r) = B;j(r)Bi(r) (77b)

In a calculation on an atomic or molecular system in B-splines we can also have the
densities p(r) as products of sums of B-splines, but in any case all the quantities in
Eq.(76a) are calculated from quadratures involving B-splines.

The working formula for two-electron integrals calculated as matrix elements B-
splines, Eq.(76a), and that for two-electron integrals calculated as matrix elements
of the FEM-DVR basis functions, Eq.(70) have exactly the same form, but with one
important difference. The B-spline version involves one-dimensional integrals and is
not diagonal in the indices ¢, k and 7,!. Instead it is banded in those indices. The DVR
version does not involve integrals and is diagonal in the corresponding indices. The
B-spline approach provides as many continuous derivatives as the order of the splines
allows, and does so globally, in contrast to the FEM-DVR approach which does not
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enforce continuity of any derivatives at the finite element boundaries. In principal
that property of the B-spline basis allows a more accurate and possibly more compact
representation of the wave function. But that advantage comes at a cost, requiring
considerably more effort in computing the two electron integrals.

3.4. Direct numerical integration

It is relatively straightforward to see how to solve a one-dimensional Schrédinger
equation on the “sharp” ECS contour using direct numerical integration, and that was
in fact done early in the history of exterior complex scaling by Turner and McCurdy
[61]. However for a two-electron problem no method existed until recently for direct
numerical integration in two-dimensions, which would be necessary for solving the
ECS Schrédinger equation under the rectangular two-dimensional scaling shown in
Fig. 1b that corresponds to the scaling domain used in the FEM-DVR and B-spline
methods discussed above.

It is for that reason that the recent work of Bartlett and Stelbovics [62, 63]
marks a remarkable step forward in the application of the “sharp” ECS approach
discussed in previous sections of this review. These authors and their coworkers have
devised a two-dimensional marching algorithm for direct numerical integration of the
exterior scaled Schrodinger equation, and applied it to electron impact ionization of
one-electron target atoms.

For example, in the simplest two-dimensional example they treated, the Temkin-
Poet (spherical average) model whose Hamiltonian was given in Eq.(10), we can write
the driven Schrédinger in Eq.(29a) as

102 1062 1
E R — _— —— sc > ] >
( + 2012 + 2012 + min(rl,r2)> Yo (ry,re) = x(r1,72) (78)

where the right hand side, x(r1,72) is (H — E)1o with the appropriate choice of initial
state, 1o = V21 /k(¢p15(r1) sin(krs) £sin(kry)é1s(r2)). Stelbovics and coworkers apply
the two-dimensional exterior complex scaling in Fig. 1b to this equation, and then
make a two-dimensional 3-point Numerov finite difference approximation to the kinetic
energy operators, so that the “stencil” involves nine points in all, using the eight
nearest-neighbor grid points [62, 64]. This Numerov formula must be generalized
for the unequal (complex) step sizes around Ry in much the same spirit as the
generalization of finite differences in Eqgs.(42a,42b, and 42¢). Thus in direct numerical
integration using finite difference, we see yet again that the derivative discontinuity
at Ry can be easily represented exactly by grid-based methods.

Based on the approach originally used by Poet [65] and exploited by Jones and
Stelbovics [66], Eq.(78) can be represented in matrix form as

A _/J}*(i—l) +BO _’J;(i) +c® ‘,J;(z#l) _ X,(i) (79)

where the notation 1,_[;’(1) denotes the ith column of the wave function represented
on the two-dimensional grid. The working propagation equation is derived from the
rearrangement of Eq.(79) and is of the form

37 0. g L g (80)
The matrices in Eq.(79) and Eq.(80) are defined in references [62, 66] and [65]. The
propagation matrices D) and E() are given by an outward marching algorthim,
and the wave function is then produced by a “backward pass” using Eq.(80). The
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boundary conditions on the wave function are that it vanish on the boundaries of the
grid, as in any ECS calculation, and those boundary conditions are involved in both
“passes”, forward and backward, across the rectangular grid. The practical algorithm
also involves making use of the symmetry (even or odd) with respect to interchanging
r1 and r9 in the wave function.

Stelbovics and coworkers have applied this algorithm to the calculation of electron
impact ionization of hydrogen and other one-electron atoms [64, 63], augmenting
it with an efficient iterative algorithm for solving the coupled equations (in the
angular momenta of the electrons) of the breakup problem in its full dimensionality.
A particularly remarkable aspect of this approach is that, since it is a marching
algorithm, it can be carried out to large values of Ry thereby allowing calculations at
energies very near the ionization threshold. Values of Ry ranging from 400 to 1000
bohr radii have been used in calculations that definitively explore the threshold region
of the Temkin-Poet problem with this method [62].

4. Calculating amplitudes and cross sections

Once the scattering wave function has been calculated, we come to the second major
step of the ECS method, namely, deciding how to extract the detailed dynamical
information it describes. One would not normally view this as a major issue, since
in most standard methods, the asymptotic boundary conditions that define the
dynamical quantities of interest are used in the generation of the wave function. But
in the ECS method, where detailed specification of scattering boundary conditions is
avoided by design, what is obtained is a numerical representation of a wave function
that contains information about all processes that are allowed at a specific total energy.
Consider, for example, Fig. 5, which shows one radial component of the full wave
function for the e-H system at a total energy of 4 eV above the ionization threshold.
Although it is possible to visually identify the spherical wavefronts that describe
ionization and the structures along the two axes that correspond to elastic scattering
and Rydberg state excitation, the numerical representation on a finite volume gives
no immediate hints about how to evaluate the corresponding cross sections.

In the first implementations of ECS to e-H ionization [51], this problem was solved
by simply computing the quantum mechanical flux,

Fp(rAlaﬁZaQ) = (1/2i)(‘1’:cvwsc - lI’scvll':c): (81)

through a surface that lies inside the region where the coordinates are real, and
by extrapolating the result to infinite grid size, where the flux can be related to
the differential cross sections for ionization. Aside from the problem of requiring
fairly large grids, where one can be assured that F, = F, + O(1/p) [52], there are
other intrinsic problems with this approach. The method requires that the grids be
large enough to allow the physical region inhabited only by the ionization portion of
the scattered wave to be distinguishable from the parts that describe discrete two-
body channels. The requirement that the ionization wave be “uncovered” before the
asymptotic flux is calculated can require grids that extend well beyond the range
where the interaction potentials are appreciable. Moreover, the flux-extrapolation
procedure is inherently limited in its ability to describe ionization when a single
electron carries most of the available energy. This is due to its inability to distinguish
beween excitation channels and ionization where energy is shared asymmetrically. In
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Figure 5. Real part of a representative radial function for electron-hydrogen
scattering at 17.6 eV incident energy. Vertical axis is Re(¥) and the two horizontal
axes are r1 and r with origins at the rear left corner. \IIlL1 1, (71,72) is shown for
singlet spin, L =2 and l1 =l> =1

principle, these limitations could be made arbitrarily small by increasing the size of
the calculation, but in practice the method falls short of being truly complete.

A far more practical approach to calculating breakup cross sections is to formulate
the problem in terms of integral expressions for the underlying scattering amplitudes.
Integral expressions for breakup amplitudes pose particular formal difficulties in the
case of long-range forces. They can also present practical difficulties when evaluated
on finite volumes, as they must be when using the finite grid ECS methods that are
the subject of this review. An important aspect of the success of ECS approach is
the fact that those difficulties can all be easily overcome. In the following sections
we turn to the derivation of practical and compact integral expressions for breakup
amplitudes involving two electrons in the continuum.

4.1. Amplitudes for breakup by electron impact

Integral expressions have frequently been employed for electron impact ionization
studies in connection with various perturbative schemes such as the distorted wave
Born approximation and other treatments that use ansatz three-body wave functions.
These schemes usually begin with the ‘prior’ form of the amplitude and then develop
approximations for ¥ , [6]. We choose instead to begin with the ‘post’ form of the
amplitude since ECS gives us a numerical representation of the outgoing portion of
¥+, In following this latter path, we have to address certain difficulties posed by the
formal theory [1, 2, 3] with regard to the proper choice of the unperturbed final state.
These formal difficulties arise when the Coulomb forces are taken to infinity.

Since we are always working on a finite volume, however, we can safely begin the
standard theory of rearrangement scattering [47], which is valid when only short-range
interactions are present, by assuming the Coulomb potentials are truncated at a large
but finite distance. We will return to the issue of reconciling our treatment with the
formal theory in section 6.
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We thus start with a formal expression for the breakup amplitude for the case of
short-range interactions,

fki, ko) = (ki, ko|V + V(E — H +ie) ' V1|T0),,
= <k1,k2|v + VG+(E)‘/1|IIJ()>pO,

where the final state is simply a product of plane waves ((r|k) = exp(ik - r)) and
¥, is the unperturbed initial state, i.e. the product of a plane wave for the incident
electron and the initial target state. It is to be understood that the matrix element is
carried out over a large, but finite volume defined by some hyperradius, pg. All of the
integrals in this section are performed on that finite volume, so we henceforth omit
the po subscript. The potential V is the full interaction potiential, ie. H =T 4+ V,
while Vi is the interaction potential appropriate to the initial channel:

(82)

Vi[¥o) = (H — E)|¥o) (83)
so that
fki, ko) = (ki, ko|V[1 + GF(E)(H — E)]| %)
= (ky, ko [V|TT)
= <k1:k2|E - Tl‘I’+>: (84)

where we have used the fact that (H — E)¥+ = 0. If we further partition ¥ into an
incident and a scattered wave term, as in Eq.(28),

Ut =T, + s (85)

then it is easy to see that the contribution from the incident term makes no
contribution to Eq.(84), since it is proportional to § functions between the incident
and final momenta, which cannot be the same. So we have,

[y, ko) = (ki ko| B — T'|0*)
= (ki,kq|E — T|G*(H — E)¥y).

Eq.(86), while formally correct, gives spurious results when evaluated on a finite
volume, as we have previously shown [67]. These arise from the parts of ¥*° that
describe discrete, two-body channels. Their contributions, for an infinite volume,
become proportional to § functions between initial and final momenta and must
therefore vanish. On a finite volume, they produce spurious contributions that render
Eq.(86) computationally unstable.

We can eliminate this problem by using distorted waves to replace the plane
wave final states. If the distorted waves are chosen to be eigenfunctions of the target
Hamiltonian, then there will be no spurious two-body contributions to the ionization
amplitude because the distorted waves and the discrete target states are orthogonal.
The derivation of the working equations uses the standard theory of rearrangement
scattering. We begin by writing the full interaction as the sum of some one-body
distorted-wave potential, V;, and a remainder:

Va = va(r1) + vq(ra) (87a)
V=V + AV, (87h)

and use the two-potential formula [47] to express the full Green’s function in terms
of, gF, the Green’s function for Vy:

GH(E) = g7 (E) + g1 (E)AVG™(E). (88)

(86)
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Using the above relationship along with the identity

(E-T)G*(E)=1+VGH(E), (89)
we can rearrange Eq.(86) to read:

f(k1,ka) = (ki, ko|[1 + Vagf (E)][L + AVGH(E)|(H — E)¥g). (90)
But [14 Vg (E)] is the wave operator for the potential V; which converts the product
|k1,k2) into a product of distorted waves |<I>f:, @ﬁ:). We thus arrive at the “two-
potential” formula for the amplitude:

Flki, ko) = (B, & |(H — B)|To) + (B}, B, |AV[T*). (91)
This can be further simplified by using the the original driven Schrédinger equation
that defines ¥*¢,

(E— H)¥V°° = (H — E)¥,, (92)
to obtain

Flki, ko) = (B, B (B — H)|T*) + (B, By |AVT*)

= (Pf L |(BE— T — Vy)|2*). (93)

Finally, we can use Green’s theorem to express Eq.(93) in terms of a matrix element
with the kinetic energy operating to the left. But since the final state is an

eigenfunction of the (T + V) with energy E, only the surface term survives and
we get,

ki ko) = / (RE DL VT — TV I Bl . dS (94)
S

Thus the amplitude is determined solely by the asymptotic behavior of ¥*¢ at p = pq.
The derivation above is formally valid for any choice of one-body distorted-wave
potential. The choice that removes the spurious behavior alluded to above and that
gives stable results for the e-H problem [68, 69, 70] is Vgis = Vi = —1/r1 —1/ra. With
this choice, the distorted waves are simply Coulomb functions with charge Z=-1.

4.2. Amplitudes for inelastic scattering

The amplitudes for excitation of discrete final states can also be extracted from the
scattered wave function via surface integrals analogous to those derived for breakup,
as originally outined by McCurdy, Horner and Rescigno [71]. We begin with the usual
expression for the excitation amplitude:

fO—»n = <kn; (I>n|‘/1|lI;+>
= <kn7q>n|H1 _E|ID+>7 (95)
where Hy =T + Vi, k,, is a free (plane-wave) state and ®,, is a discrete target state.

We can again use Green’s theorem, along with the fact that (H; — E)|k,, ®,) =0, to
express Eq.(95) as a surface integral:

foon = / (k,®,VET — TTVK, &,) - dS
S

= / (k,®,VI* — VK, d,) - dS. (96)
S

Note that the replacement of ¥ by ¥*¢ in the surface integral follows from the fact
that the discrete target states vanish at large p.

Bartlett et al. [64, 62], evidently unaware of our earlier exposition [71], rederived
Eq.(96) and used it to compute excitation cross sections in their recent implementation
of ECS.
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4.8. Amplitudes for double photoionization

Atomic double photoionization is a “half-collision” process in which an atom absorbs
a single photon and ejects two electrons into the continuum. Like electron-impact
ionization, the problem is one in which the final state involves three unbound charged
particles, so much of the formalism needed to describe collisional ionization pertains
to double photoionization as well.

In the weak field limit, the amplitude that describes this process is a matrix
element of the dipole operator between the initial target wave function and a final
state involving a doubly charged ion and two free electrons, which in the “velocity
form” is,

Sk, ko) = (¥, ;. le- (V1 + V2)|To) (97)

where € is the polarization unit vector, and |T'g) is the initial (bound) state of the atom.
In Eq.(97) the required final state wave function, ‘I!,;’ ko> Whose initial channel is one
where both electrons are in the continuum, is the same wave function we referred to
in section 1.1, and in section 4.1 when we discussed the “prior” form of the collisional
breakup amplitude. Following this route would require us to solve a driven Schrédinger
equation for each energy sharing of final state photo-electrons we were interested in.

A more efficient path is to begin with the first-order equation that describes single-
photon absorption by a 2-electron atom, which we can write, again in the velocity form
as:

0 0
(o -+~ WD) = - (Va4 Vo) 10) = (4 22 ) IT) (98)
21 822
where we have chosen the z axis along the polarization vector.

This driven Schrédinger equation has the same structure as the scattered wave
equation we considered in the (e,2e) case, with the dipole operator times the initial
state replacing (H — E)¥, as the driving term. The asymptotic form of the solution of
this equation can therefore be analyzed following the same line of reasoning employed
by Rudge [3] in his formal analysis of the electron-impact ionization problem:

3 1/2 ) )
\I,—ll- N (27ri)1/2X(k1,k2,p) (I:_5> :-Tr(f,l,f,%a)ezKp+z§ln(2Kp) (99)

where J is proportional to the double photoionization amplitude and the quantities p,
a, K and ( are defined as in Eq.(2). In Eq.(99) x(ki,ks, p) is an (irrelevant) overall
phase factor, which can be analyzed [58, 72] as in the discussion in section 6 below,
and which contains the “Peterkop phase” that depends logarithmically on p.

We can develop an integral expression for the double photoionization amplitude
in the same way we did for the breakup amplitude in section 4.1. The resulting
expression for the amplitude we derive is [58]:

N 2,
g:('rh'r%a):;(‘I)klvq)kQKE_T_Vvl”qu_)

1

R (100)
t / (<I>;1*<1>;2*V\I:;r - qvaql*@;;) -dS
S

™

where @ is a Coulomb function with charge Z, normalized as in Eq.(106), and V; is
the one-body part of the interaction potential,

Vi=~2Z/ri—Z[rs (101)

with Z the nuclear charge of the atom.
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5. Partial wave analysis of breakup amplitudes

In a practical calculation on either electron-impact ionization or double photoion-
ization of an atom, we exploit the spherical symmetry of the target in a partial wave
analysis. The integral expressions for breakup amplitudes in Section 4 and their corre-
sponding surface integral representations then reduce to combinations of amplitudes
computed on an arc in the {ri,r2} plane of radial coordinates. That partial wave
analysis is the subject of this section.

5.1. Electron-impact ionization
In carrying our numerical computations for ionization by electron impact, we solve
the driven Schrodinger equation

(E—H)‘I’sc(rl,rg) = (H—E)\I’(](I'l,I'Q) (102)

by adopting a convential partial wave description and expanding both ¥y and ¥*¢ in
coupled spherical harmonics Hl 1o

Yol (#1,82) = Y (hmalomallila LM) Yy iy (81)Yig,m, (B2)  (103)
mi,m2

using the notation of Edmonds [73] for the vector coupling coefficients. For example,
for ionization of the hydrogen atom in its 1s ground-state, we write

1 K1 iks-r
[@15(r1)e™ ™2 4+ (=1)5 By, (r2)e™i™ ]

V2
i il\/2n(2L + 1)

Tszk

Ty =

¢1s (r1)jr (kir2)Yor (1, £2)

+ (— )S¢1s(7‘2)JL(kiT1)%8(f1af2)] (104)
and

.7,
i o .
Pse = E —r1T2¢1L112(T1,7‘2)51L1(1)2(1'1,1'2)a (105)

LyllylZ

and solve coupled two-dimensional equations for the radial functions zpl’; 1,(r1,72). To
evaluate the ionization amplitude using the surface integral, Eq.(94), we also need the
partial wave expansion of the Coulomb function:

- ile—m(k) -

B = Y 0 ()Y ()Y () (106)

m=—I

where the radial Coulomb function, cpg) (r), has the asymptotic normalization

. z
‘chl) (r) — sin (kr + Z In 2kr — %l + m(k)) , (107)
with
(k) =argT(l+1—i/k). (108)

If we substitute Egs. (105) and (106) into Eq.(94), we get the following expression
for the ionization amplitude:

Fkyi, ko) = Z Z-thflze’i(’ﬂll(kl)‘i‘ﬂlg(kz))fllll’b(khk2)yﬁ(l]2(1;1,122)’ (109)
L,l1,l2
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where

fE 1 (e, B2 po) =

po [ (@ () (oo 7o) Lol
ks Jy a | ¢y, (k1,r1)e;, ( 2J’2)d—p¢zl,zz—
d

L
¢11,12 o
dp p=ro

The triple differential cross section (TDCS), which is differential in energy sharing
and the directions of both outgoing electrons, is obtained directly from f(ki,ks) by
the expression

[sol(f) (K1, T1)<P1(2C)(k2ﬂ‘2)])

(110)

d30' _ 16772k1k2
dE1dQ:dQ2  k?

where 2; and (), are the solid angles associated with k; and k,. The double differential
cross section (DDCS) measures the energy and direction of only one of the ejected
electrons and is obtained by integrating TDCS over one set of solid angles. The single
differential or energy sharing cross section (SDCS) is defined as the integral of the
TDCS over ; and 5 and, because of the orthogonality properies of the coupled
spherical harmonics, is simply

do 1672k, k
a5 = le S| ks ko)

L.l 02

(ki ko) (111)

| (112)

where the total energy is £ = k% /2 + k% /2 = Ey + E5. The total ionization cross
section (TICS) is then

Y do

O; = —_

won o dE1

although the TICS is frequently defined as the integral over half this interval, which
requires a definition of the single differential cross section as

do do
— =2 114
dE, ~ “dF, (114)

dE, (113)

so that

E/2 dé
Oion :/O d—_EldEl (115)

5.2. Double photoionization

The decomposition of the double photoionization amplitude into partial-waves can be
carried out in complete analogy with the analysis of the electron impact ionization
amplitude given in section 5. We use a representation of the solution of the first-order
equation, ¥ in Eq.(98) in coupled spherical harmonics:

1 P
U (ry,m0) = ) F%Llh (r1,m2)Yi0m (F1, F2). (116)
l1,l2 12
Note that, in contrast to the electron impact case, we need only retain a one
L component in the expansion because the dipole operator that appears on the
RHS of Eq.(98) imposes specific selection rules. So, for example, to treat double

photoionization of ground-state helium, we need only compute the L =1 component
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of the scattered wave. The rest of the analysis proceeds exactly as that given in section
5.1, so for the ionization amplitude, we obtain the expression

F(ki, ko) = Z i~hlagi(m (k) +my (kQ))g:lI;,lg (1, ka) Y31 (ke ko), (117)

l1,l2
with
F1. 1, (K1, k23 po) =

/2
Po . . p

d 1 .
¢ﬁ,12% [901(1)(]“1,7“1)801(2)(’“2;7’2)]) (118)

P=po

For the helium case, the cpl(c) are partial-wave Coulomb functions with charge Z=2.

The TDCS for double photoionization is the given by

d’c 472 9
———— = — k1 k| F(ky, k 119
dEldﬂldQQ wc ! 2| ( b 2)| ( )

and the corresponding SDCS is

do  4n? 9
d—E1 = Eklkz ; (|9"lllzk1kz| ) (120)

If one chooses to use an explicitly symmetrized expansion of the scattered wave, as
we did in our study of helium double photoionization using complex-scaled B-splines
[58], it may be convenient to decompose the full ionization amplitude into direct and
exchange partial wave amplitudes. Such an analysis is carried out in ref. [58].

6. The overall phase of the breakup amplitude in the formal theory of
ionization

We have remarked at the outset that the formal theory of ionization has not yet
provided a practical path for first-principles computation of the full wave function.
On the other hand, it is interesting to reverse the argument and to ask whether a
wave function obtained from an ab initio calculation can be interrogated in a way to
see if it has characteristics demanded by the formal theory. One way to test this is to
examine the phase of the computed ionization amplitude. It turns out that this phase
can be used to make contact with the formal theory and, in addition, provides a very
sensitive test for gauging numerical convergence.

Issues related to the proper definition of the phase of the ionization amplitude
have been discussed in several recent formal studies [10, 74]. Moreover, there appears
to have been some confusion about the way the phase of the ionization amplitude is
handled in the ECS formalism [75], which in turn prompted us to examine the matter
in more detail [72].

To illustrate the discussion, it suffices [72] to consider any two-dimensional (ie.
zero angular momentum) model of e-H ionization, described by a radial Schrodinger
equation:

1 92 1 02 1 1

S O =E 121
287‘12 26'[‘22 r1 ro +‘/2 w ¢7 ( )
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where V3 is the (model) two-body interaction and E = K?2/2 is the total energy. In
hyperspherical coordinates ( p = /7% + r3, tan(a) = r2/r1), Eq.(121) becomes, with
¥ = ¢/p*/?
e 118 (o)
20p% 8p%2  2p? Do’ p
where ((a) is defined by the full interaction potential:
1 1
- =8 (123)
r1 T2

¢ = E9, (122)

Following Rudge’s approach[3] for the full ionization problem, we rearrange the

Schrodinger equation as
K? 1082 1 ¢(a) 1 0?
— ottt = 124
7 T3 Op? + 8p? + p ¢ 2p? a2 ¢, (124)

and formally solve this using the Coulomb Green’s function, G(p, p'), with a as a
parameter on the left-hand side. The Green’s function for Eq.(124) is given by

Glp.) =~ F (G K pOHG Ko py), (125)
with

F(¢, K, p) ~sin(f(p)) p —
H(¢, K, p) ~ exp(if(p)) p — 00

It immediately follows [72] that the asymptotic form of the wave function can be
written

(126)

1 * / 2 ,
¢(T1,7’2)=—% o dp G(Pap)%—mwﬂpaa)
A(a) , ¢(a)
p:(x) W exp [Z(Kp o ln(ZKp))] (127)

with the ionization amplitude, A(«) identified as
1 T 1 ((a)
Ala) = 7 P [1(4 +argF(2 —i ))]
| doF G K5 600 (128
o p Y 7p 2p2 6&2 p) *

Peterkop points out that this treatment only defines A(a) to within an a-
dependent phase, which is a fundamental shortcoming of the hyperspherical approach.
Kadyrov et al. [10] have recently shown how to remove this amplitude-phase ambiguity
by defining the ionization amplitude in terms of the plane-wave function Ui ks (see
Eq.(6)), ie. using the prior rather than the post definition of the amplitude. We will
not concern ourselves further with these distinctions since the phase in question is an
overall phase in the amplitude for a specific physical process, and as such does not
change any physical observable.

We can now consider an integral expression for the amplitude of the form

I(k1, ko) = /¢(H — E)todridrs, (129)
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where, as in the formal theory, we choose g to be the product of two radial Coulomb
functions with effective charges z; and 2z and momenta k; and ko defined as:

k1 = K cos(fB)
ky = K sin(f). (130)
With these definitions, we have

Yo(r1,72) = Gk, (115 21) Prs (125 22)

du(r:2)  ~ sin(kr + zln(%r) +u(2)), r— 00 (131)

where
ik (z) = arg D(1 — i%). (132)

To evaluate the integral, I, we again switch to hyperspherical coordinates and
use Green’s theorem to express it as a surface integral:

5 lim / [ %_%/;0_ 06¢] pda (133)

p—»oo

To evaluate the surface integral, we substitute the asymptotic forms for 1) and 1°
given in Egs. (127) and (131), respectively. The integration can be carried out using
the method of stationary phase [76], which is exact in the limit p — oco. The algebra
involved is tedious, but straightforward, and is outlined in ref. [72]. The result is

I - - inWKiA(ﬂ)
lim p— o0
x exp |—i(Q(k1,21) + Q(k2,22) + %Tﬂ-)
x exp [i¢In(2Kp)] + O(1/p), (134)
with
Qk;2) = mi(2) + 25 In(k/K), (135)
and
B =
¢= = & _ B (136)

We have remarked above that the hyperspherical approach only defines the
ionization amplitude to within an arbitrary phase. Thus the factors in Eq.(134)
involving Q(k1,21) and Q(ka, z2) can easily be incorporated into the definition of the
ionization amplitude, A(f3), with no physical consequences. The remaining portion
of the phase that depends logarithmically on p is more problematic, since it diverges
when the volume of integration is taken to infinity, unless the effective charges are
chosen to make ¢ vanish:

CB) 21| 2

SB)_ &, 2 1
e (137)

This is the so-called Peterkop condition [1].

We have already emphasized the fact that in numerical implementations of ECS
it is essential to maintain orthogonality between the Coulomb distorted waves and
the bound hydrogenic states and therefore remove any spurious contributions to the
breakup amplitude that arise from discrete two-body excitation channels. This leads
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Figure 6. Phase of the computed amplitude for the single differential cross
section for breakup at a total energy of 1.5 Hartree for different 2D models of
e-H ionization. Left panel: Temkin-Poet model; right panel: collinear model.
The curves labeled uncorrected were computed using Eq.(133) at a fixed value of
the hyperradius. The corrected curves are obtained by removing the appropriate
volume dependent portions of the phase for each model, as discussed in the text.

naturally to the choice z; = 25 = 1, as explained at length in refs. [67] and [68] -
a choice which generally does not satisfy the Peterkop condition and therefore leads
to a divergent phase on an infinite volume. Divergence of the phase of the ionization
amplitude is of course not a concern when the integral is carried out on a finite volume.
Moreover, for any choice of effective charges, the computed amplitude should carry a
predictable p-dependent “Peterkop phase”, x(p) = exp [i¢In(2Kp)] - a fact that can
easily be tested numerically. Such a test was carried out in ref. [72] for two popular
2D models of e-H ionization, the Temkin-Poet (TP) model and the collinear (CO)
model, which approximate the electron-electron inteaction as:

1
TP _
Vo F(ri,re) = ey (138a)
1
CO — 1
Vo 7 (re,m2) e (138b)

Using these definitions, along with Egs. (123) and (136), we find that the choice
z1 = z2 = 1 produces the following Peterkop phases for these two cases:

X" (p) = =1/k> In(2K p) (139a)
x99 (p) = =1/ (k1 + k2) In(2K p). (1390)

Figure 6 shows numerical ECS results for the phases of the ionization amplitude from
the TP and CO models, before and after removal of the Peterkop phase. Removing
the Peterkop phase clearly gives a p-independent result.

For the two-dimensional models of ionization just considered, any overall phase
carried by the breakup amplitude has no physical consequence, since it makes no
contribution to the SDCS. For the full six-dimensional e-H problem, however, the
above considerations are more than an idle curiosity. In the full problem, one typically
decomposes the wave function into total angular momentum (L) components, which
are in turn expanded in coupled partial waves. Since the various L-components
must be combined coherently to produce the ionization amplitude, it is essential
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Figure 7. Phase of the L = 0, S = 0 component of the e-H ionization amplitude
as a function of the number of coupled partial-wave channels included. The
incident energy is 30 eV and the angle between the ejected electrons is 120
degrees. The dashed curves are the raw phases from the amplitudes computed
using Eq.(133) for a series of hyperradius values between 102 and 150 bohr. The
solid curves are obtained by removing the volume dependent Peterkop phase.
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to maintain phase coherence between the various components if one is to compute
accurate differential cross sections.

The derivation of the Peterkop phase for the full problem is a straightforward
generalization of the line of reasoning used above [3]. For the choice z; = 22 = 1, the
Peterkop phase for the full problem,

—1/lks — ka|In(2K)p), (140)

depends on the speed and direction of ejection of both electrons. Each total angular
momentum component of the amplitude should carry the same Peterkop phase,
provided the calculation is converged in partial waves and provided the same value of
hyperradius is employed for each component. When the Peterkop phase is correctly
constructed, it factors out of the total amplitude and makes no contribution to any
observable cross section [68].

Employing the same wave functions used to compute the triple differential cross
sections we previously reported [70], we computed the phases of the ionization
amplitudes and applied the Peterkop phase correction. Figure 7 displays results for
the L =0, S = 0 component of the amplitude at a total energy of 30 eV for the case
where the angle between the ejected electrons is 120 degrees. The various panels show
the raw and corrected phases for seven different values of p as more partial waves
are included in the calculation. The convergence of the corrected phase toward a p-
independent result provides a sensitive test of the overall quality of the calculation.
These tests also provide a stunning demonstration that the computed wave functions
do indeed display properties demanded by the formal theory.

7. Accurate amplitudes for electron impact ionization of the hydrogen
atom

Calculating the scattered wave is by far the most computationally intensive step in
this approach. The partial wave expansion of the scattered wave for the e-H problem,
given in Eq.(105), when substituted into the driven Schrédinger equation (Eq.(102)),
gives a set of coupled two-dimensional equations of the form:

1 62 1 6% 1 1 '
] 17/){;12 (T17T2) - Z(lll2||lll2>¢ll’;l’2 (r177.2)

Etsr—st+im—st—+—
2 2
2 67’1 2 67’2 1 T2 l'll; (141)

= XlLllz(T17r2)

Formulas for the terms (l1ls||l;l5) and Xi1,» which come from the partial wave
expanssions of 1/|r; — ra| and the RHS of Eq.(102), respectively, are given in ref.[52].
In the ECS approach, these coupled equations are solved on a complex-scaled grid
using one of the methods described in section 3 and the solutions are then used in
constructing the cross sections of interest.

7.1. Numerical methods

We have calculated and reported results for e-H ionization using the ECS method at
collision energies from 1 eV above threshold up to 54.4 eV [51, 52, 69, 70, 77, 78, 79, 80].
For collision energies ranging from a few eV above threshold up to 25 eV, we typically
use grids whose real parts extend to ~130 bohr and include contributions from total
angular momentum values up to L = 9. In this energy range, as many as thirty
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coupled partial wave channels, depending on the L-value considered, are required for
convergence. As the energy increases, more angular components are required, but one
can use smaller grids. At 54.4 eV, which is the highest energy we considered, our ab
initio calculations included angular momentum components up to L = 13 and grids
whose real parts extended to 80 bohr. In practice, it is very difficult to obtained
converged cross sections above 50 eV with our methods because of the large number
of contributing partial waves, but fortunately it has been found [78] that 50 eV is just
about the energy at which perturbative methods become applicable.

All of our published results on the full e-H problem were calculated using high-
order finite difference. For the largest grids, we typically use ~500 points in each
radial dimension, which requires us to solve linear systems of a few million complex
linear equations. The finite element-DVR, approach, which is more efficient than finite
difference, would allow us to extend the grids to ~200 bohr with roughly the same
number of terms, but we have yet to apply this method to the full e-H problem.

It is impractical to solve linear systems of this size directly, so we must employ
iterative methods The eigenvalue spectrum of the complex exterior-scaled Hamiltonian
is such that no known iterative algorithm will converge to solution without pre-
conditioning. Therefore, finding a suitable pre-conditioner for the coupled equations
was a necessity. We found that the set of uncoupled radial equations, obtained by
setting (I11o||1,15) = 0 for all (14,14) # (I1,1s), have numerical properties similar to the
coupled equations, but require solving linear systems only as big as the total number
of radial grid points (~250,000). The solutions of the uncoupled equations were found
to be a suitable preconditioner for the coupled equations, which in turn were solved
iteratively using a congugate gradient squared algorithm. Details can be found in
ref.[52].

While the first ECS results for e-H ionization were obtained by extrapolating the
quantum mechanical flux [51, 52], the most accurate results obtained to date have
used the underlying integral amplitudes, as outlined above, and those are the results
which we will summarize here.

7.2. Single and double differential cross sections

The single differential cross section measures the energy sharing between the ejected
electrons, irrespective of their angles of ejection. This quantity, which reduces to
an incoherent sum of partial-wave contributions, is plotted in Fig.8 for a range of
collision energies. We show the total SDCS along with the individual singlet and triplet
contributions. At energies above 25 eV, the cross sections become increasingly bow-
shaped, reflecting the fact that at high energies the tendency is for the fast incident
electron to retain much of its energy and to produce a slow secondary electron. As
the collision energy decreases, the SDCS begins to flatten. At 17.6 eV and below, the
SDCS is essentially flat, in agreement with the predictions of Wannier theory [81], and
begins to reveal subtle undulations, also in accord with the predictions of semiclassical
theory [82].

The individual contributions to the 25eV incident energy SDCS for different values
of L and S are shown in Fig. 9. Each of these components is symmetric about E/2,
reflecting the indistinguishability of the electrons. Note that for both the singlet and
triplet cases, L = 0 does not give the dominant contribution to the cross section.

Further insight about the convergence of the SDCS at low energy is gained by
looking at the convergence of a single L component as the number of partial waves
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Figure 10. Single differential cross sections for electron-impact ionization of
hydrogen at 4 eV above threshold, for L = 0, S = 0. Statistical weights are
not included. The lowest curve is the result with only the ss partial wave in the
calculations and the middle curve couples ss + pp. The upper set includes up to
dd (solid) and ff (dashed). case using ss + pp + dd pairs. The results in the left
panel were computed using ECS, while those on the right were obtained from a
time-dependendent close-coupling calculation [69]. (1.0 Mb = 1.0 x 10~ *8¢m?).

is increased. Figure 10 shows results for the L = S = 0 component of the SDCS
at 17.6 eV. When only s-waves are included, which is the much studied Temkin-
Poet model, the cross section exhibits a pronounced V-shape. Adding the pp terms
in the expansion increases the magnitude of the cross section substantially, showing
the critical importance of the dipole coupling in the L = 0 cross section. The most
striking effect of coupling higher angular momentum terms to the ss pair is to flatten
the overall differential cross section, an effect, as we have mentioned above, that is
consistent with semiclassical and Wannier theory.

The SDCS is not a quantity for which direct measurements exist. The SDCS is
generally obtained by integrating the double differential cross section (DDCS) over
the angle of the observed electron. There have been two experimental determinations
of the e-H DDCS. Shyn [83] reported measurements of the DDCS in 1992 for incident
electron energies between 25 and 250 eV. The very recent absolute cross section
measurements of Childers et al. [80] cover the energy range from just 1 eV above
threshold to 40 eV and include measurements of the DDCS for ejected electrons both
above and below E/2. Figure 11 shows a representative sampling of DDCS results at
an incident electron energy of 25 eV. There is evidently excellent agreement between
experiment and both the theoretical ECS and CCC results over the entire range of
energy sharing. Similar agreement is found at other collision energies. Note that there
is no symmetry in the DDCS about E/2, while the integral under the various curves
must yield a symmetric SDCS.

7.8. Triple differential cross sections

The triple differential cross section (TDCS) offers the most stringent test for judging
the fundamental correctness of any method that proposes to properly treat the three-
body Coulomb problem from first principles. Unlike the SDCS, the TDCS requires a
construction of the complete ionization amplitude so that any phase inconsistencies
among the partial wave amplitudes ( flI;’l2 in Eq.(109)) would adversely affect the
calculated TDCS. In other words, the SDCS tests only the magnitudes of the calculated
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Figure 11. e-H double differential cross sections at 25 eV incident electron energy
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Dashed curves: CCC. Circles: experiment.

amplitudes but the TDCS also tests the phases.

In 1996 Roder et al. [84] published a set of TDCS for e-H ionization at collision
energies between 15.6 and 54.4 eV. All of this data was taken in the so-called
“symmetric co-planar geometry” where the incident and ejected electrons all lie in
the same plane and the two ejected electrons have the same energy. The data was not
absolute, but was internormalized at each energy. In 1997 Réder et al. [85] provided
a small set of absolute data at 15.6 and 17.6 eV, which could then be used to put the
earlier data at these two energies on an absolute scale. Much has been written about
this “absolute” data over the past few years. Inconsistencies in the original 17.6 eV
data were pointed out by Bray [86]. The data was subsequently remeasured [87] and
reanalyzed [79] and shown to agree well with the predictions of both ECS and CCC
calculations.
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Figure 12. Equal-energy sharing TDCS at 15.6 eV incident energy for various
coplanar geometries. Absolute experimental data [84, 85] has been multiplied by
0.5.
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multiplied by 0.16 to fit calculated cross section. Solid curves: ECS results [70].

The 15.6 eV TDCS data does not suffer from any internal inconsistencies.

However, there is strong evidence that the

absolute normalization is incorrect [86].

Figure 12 compares the results of ECS calculations with the experimental data at 15.6
eV. It is clear that reducing the experimental cross sections by a factor of 2 brings
them into excellect agreement with theory, both in shape and in magnitude. Other
calculations [85, 88] also support this conclusion.

Figure 13 shows TDCS data for 25 eV incident energy. The experimental results
for this energy were reported in arbitrary units, but since they are internormalized, we
have chosen a single scaling factor for plotting the data. Once again, the agreement
between the scaled data and the ECS calculations is excellent. There is similarly good
agreement between the ECS results and experiment at other energies as well.

The reduction of this problem to computation means that with accurate
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calculations we can now confidently explore the dynamics at geometries that have
never been measured. A glimpse of what is now possible is given in Fig. 14, which
shows the TDCS at 25 eV for three different energy sharings as a function of the
angles of both ejected electrons. The TDCS for nonequal energy sharing demonstrates
in detail how the angular distributions change as the fraction of the ejection energy
taken by one electron varies from zero to one. For this simple system it will shortly
become a routine matter to computationally explore noncoplanar geometries together
with with unequal energy sharing only a few volts above threshold. At this stage it
would be useful to have a final, absolute, experimental benchmark for one or two such
configurations.
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8. Double photoionization of the helium atom

Our recent treatment of double photoionization of the ground state of helium [58] is an
example of the use of B-splines in a two-electron exterior scaling calculation. In this
review we limit ourselves to only a brief description of the calculation and a summary
of the comparison of the results with experiment, concentrating on some of the salient
aspects of the physics.

The double photoionization of an atom by a single photon is a process that is
exquisitely sensitive to the correlation effects of the initial state, which we denoted as
|To) in Eq.(98). If we consider the simplest model for this process in the helium atom,
we would represent the initial state as a single-determinant Hartree-Fock wave function
with the configuration |1s2|. With only one photon, the double ionization transition,
|1s%| = |ks, k'p|, would have zero probability if the continuum orbitals ks and k'p were
taken to be Hartree-Fock virtual orbitals. Although such an approximation would be
an extreme over simplification of the physics, it is nonetheless why it is sometimes
said that single-photon double ionization is a “pure correlation” process.

8.1. Numerical solution of the first-order wave equation

The first requirement, because of the sensitivity of this double ionization process to
correlation effects in the initial state, is an accurate configuration interaction (CI)
description of the ground state. For the initial state we used configurations containing
orbital angular momenta up to ! = 4 made up of Slater type orbitals with exponents of
2.4,3.6,4.8,6.0and 6.8 for I = 0, ..., 4 respectively, to give a total of 115 configurations.
These Slater orbitals are expanded in the B-spline basis described below, so that the
same underlying basis of B-splines is used for both the initial and final states. The
ground state energy given by this calculation is —2.903198 hartree compared to the
exact value [89] of —2.903724 hartree and is thus close to the [ = 4 limit for the energy
of the initial state.

Calculations for double ionization can generally be performed using smaller values
of Ry, and therefore smaller basis sets, than would be required for the isoelectronic
electron-impact ionization process (electron-impaction ionization of hydrogen in this
case). The reason is that the Coulomb attraction of the nucleus dominates even at
relatively short distances over electron-electron repulsion in the final state except at
energies near threshold. For double ionization of the helium ground state, a value of
Ry = 35ag suffices for photon energies 20 eV above the double ionization threshold
and higher.

A small basis set suffices as well, and using 53 B-splines for each one-electron
atomic symmetry is adequate for this calculation. Those B-splines were defined on a
computational grid with 47 B-spline knot points over the first 42.0 ag, and 6 additional
knot points on the remaining complex contour out to Ryax = 80ag. Typically in ECS
calculations a less dense grid can be used on the complex part of the countour, where
the wave function is decaying exponentially. The angular momentum expansion of
lII;r in Eq.(116) included I values up to lmax = 4, giving us contributions from the
kskp, kpkd, kdkf, and kfkg double continua. Using these 53 B-splines and 4 double
continua, we have a total of 11,236 configurations in the CI representation of ¥;. All
the results we present below were computed in the velocity gauge, although the results
in the length gauge are essentially the same [58].
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8.2. Single and triple differential cross sections

A initial sense of how the double photoionization cross sections reflect the electron
correlation in the initial state can be had by examining the contributions to the single
differential cross section, defined in Eq.(112), for various partial waves. For example,
the contribution of the double continuum corresponding to kdkf arises only from
the correlating contributions to the 'S ground state of the form |dd’'| and |f f'], i.e.,
configurations with two orbitals of those angular momenta. The various contributions
to the SDCS at a photon energy 20 eV above threshold are shown in Fig. 15. The
contributions of the double continua kskp and kpkd are of similar magnitude (|pp’|
contributes to both), but the contributions of double continua with higher partial
waves are smaller reflecting the ever smaller contributions to angular correlation in
the initial state of higher angular momenta.
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Figure 15. SDCS for photon energy 20eV above threshold. Circles: experiment
by Wehlitz et al. [90]. Dashed curve: TD-CC calculations by Colgan et al. [91].
Thick solid curve: ECS [58]. Lighter solid curves: contributions to SDCS from
each noted double continuum.

Triple differential cross sections reflect those correlation effects as well as specific
optical selection rules. The left column of Fig. 16 shows some examples, again for a
photon energy 20 eV above threshold. In the left column of that figure the direction
of one electron is always along the polarization diretion, #; = 0°, and we see in the top
panel the selection rule that prevents electrons of the same energy from going out in
opposite directions (f2 = 180° in this case). However the other panels in that column
show how for unequal energy sharing no such selection rule exists. The zero (or very
small) value of the cross section at 8 = 0° reflects the effects of electron repulsion
preventing the two electrons from exiting in the same direction, and in contrast to the
selection rules the contribution from the double continua with higher partial waves
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is required to resolve that effect computationally. Also shown in Fig.

47

16 are the

results of the TDCC and HRM-SOW methods, both of which also describe these
triple differential cross sections well.

TDCS (bev's))

[
ul

N
S Lo

=
1

=
(=}

ol

TDCS(bev™ s?)

[N
~

T 0 120 A
m = ¥ r ]

1 101 8,=0 75 - Bl -
© | g E,=10eV o ] 3 8F -

2 v 1 Qo 6 N |
N = 6 !

5 — n F 1

8 ) N ® Q 4 ]

= = —

0

o

N
Q
o
w
Q
o
8
o

0 \ \

-1 400

20

» I T T N ]

(\‘4’.\ I N el | 1
B 15 - w8 ]
Y oL i
[
alo ; F —
) 0 [ l
8 5 S L 1
- (= 1

. e J

-180 90 0 90 180 0 100 200 300 400

8, (degree) 0, (degree)

Figure 16. Left column: TDCS for photon energy 20eV above threshold, at
various energy sharings for §7 = 0°. Circles: experiment by Braiining et al.
[92]. Dashed curve: TD-CC calculations by Colgan et al. [91]. Dotted curve:
HRM-SOW calculations by Selles et al. [93]. Thick solid curve: ECS [58]. Right
column: TDCS for photon energy 40eV above threshold, in the unequal energy
sharing of E1 = 35 eV and E2 = 5 eV at various values of 81 of the 35eV electron.
Circles and dashed curve: experiment and CCC calculation of Ref. [94]. Thick
solid curve: ECS [58]

The triple differential cross sections at unequal energy sharing for relatively low
energies above threshold remain the most difficult to calculate and there occasionally
remain small, but significant differences between various theoretical calculations. In
the right column of Fig. 16 we compare with the experimental results of Bolognesi
et al. [94] and the results of CCC calculations included in the same reference for
an energy sharing By = 5 and E> = 35 eV, and 6; varying from 0° to 60°. We
have normalized the relative experimental cross sections to our computed TDCS at
01 = 60° and 0> = 30° for this energy sharing, thereby fixing the normalization of the
experiment. The results of CCC calculations from reference [94] are also shown in the
right column of Fig. 16 with no scaling. Although both theoretical results generally
reproduce the shapes of these these and similar TDCS plots [58], it can be seen that
there remain significant differences between the theories and between the theories
and the experiment. However, it cannot be concluded from these comparisons with
experiment that the theoretical results from either of these high-quality calculations
is definitively more accurate than the other.

A more complete comparison with experiment at 20 eV involving various energy
sharings is shown in Fig.17, where the comparison with experiment shows the excellent
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agreement of theory with absolute experimental measurements that is now the state
of the art [58]. Two-dimensional plots of the TDCS versus the angles of the ejected
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Figure 17. TDCS at 20eV above threshold for the geometry 61 = 309, ¢1 = ¢2.
The panels show various energy sharings with the energy E; given in each panel.
Circles: experiment by Braiining et al. [92]. Solid curve: ECS [58].

electrons like these are essential for conveying an accurate impression of the comparison
between experiment and thoery, but it is difficult to glean a clear overall impression
of the angular dependences of these cross sections from such graphs. In Fig.18 we
plot a three-dimensional view of the TDCS for a photon energy 40eV above threshold
and with the energy sharing E; = 35eV and E; = 5eV. The dark arrow denotes
the direction of ejection of the faster electron, while the surface is a plot of the
corresponding TDCS as a function of the ejection angles of the slower electron. This
plot immediately conveys the general impression of the dynamics of two electrons
tending to exit the interaction region in opposite directions, due to the Coulombic
repulsion between them, except when optical selection rules prevent them from doing
so. The details of the changes in the cross section with varying 6; (the direction of
the faster electron) suggest the competition between those two effects.

Malegat et al. [95, 96] have derived a useful and compact representation of the
TDCS for double photoionization by exploiting particular properties of the coupled
spherical harmonics which were first noted by Kono and Hattori [97] and generalized
by Malegat et al. in this application. For each energy sharing, the TDCS can be
parametrized rigorously by two complex amplitudes, each of which is a function only
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Figure 18. 3D representation of the TDCS for 40 eV excess energy with energy
sharing E1 = 35 eV, Ey = 5 eV. Light arrow (upwards on z-axis) is the
polarization direction. The darker arrow is the direction of electron 1 (35.0 eV),
varying from 0° to 90° in steps of 18.0°.

of 615, the angle between the two ejected electrons, and can be written in the form,
do

———— = |A,(E1, E»,0 0 6 142

dadQ;dQ, | g( 1, Es,612)(cosb; + cosbs) + (142)

Au(El, EQ, 012)(COS 01 — COS 02)'2

The magnitude of each of the amplitudes, Ay(E1, Es,612) and Ay (E1, E»,60:12),
and their relative phases can be determined by fitting experimental determinations
of the cross sections, and they can be calculated directly by any of the theoretical
methods that have been used successfully to treat the double photoionization process.
A comparison of various calculations of these amplitudes for the case of the energy
sharing E; = 5eV and Es = 35€V is shown in Fig. 19. Although some disagreements
between the theoretical methods represented in that figure are noticeable, primarily for
geometries at which the ungerade amplitude, A,, is very small, current experiments
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Figure 19. Amplitudes for photon energy 40 eV above threshold with E1 = 5eV.
Circles: experimental results from [98]. Solid curve: ECS [99], dashed curve:
TDCC [99], dotted curve: CCC from [98], dash-dotted curve: HRM-SOW also
from [98].

are not sufficient to distinguish the theories. In any case the triple differential cross
sections calculated by all of them are generally in good agreement .

9. Conclusion and outlook

Theoretical and computational advances over the past few years have made it possible
to reduce the simplest (e,2e) and (y,2e) problems to practical computation. ECS has
played a key role in this development by providing a framework for calculating the
exact scattered wave function for the Coulomb three-body system on a finite volume
without having to specify its detailed asymptotic form. This approach circumvents
the formidable problems posed by trying to numerically implement the formal theory,
which to date has not been possible.

At this point, it is logical to ask whether the techniques that have been so
successful in solving the Coulomb three-body problem can be extended to look at more
complex targets. One can of course treat the problem of electron impact ionization of
a multi-electron atom with a simplified frozen-core, single active electron model. At
that level of approximation, the problem is reduced to an equivalent 3-body problem
and many theoretical studies have been carried out at that level.

The primary motivation for going beyond the frozen-core model is that, even with
two active target electrons, there are new ionization processses that present themselves:
excitation-ionization, excitation-autoionization and double ionization. In excitation-
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ionization, the atom is singly ionized and the residual ion is left in an excited state.
In excitation-autoionization, the target is first excited to an autoionizing state which
can then decay into the ionization continuum in a process that competes with direct
ionization at the same energy. Double ionization is the (e,3e) process in which there
are three free electrons in the final state. To study these kinds of problems, we have
to address at minimun a target atom with two active electrons. The ECS method, as
originally applied, involves solving large, sparse systems of complex linear equations.
Extending this implementation, directly, to a three-electron problem would lead to
systems that are extremely large and prohibitivly expensive to solve. To find a viable
alternative, it is clearly necessary to seek methods that scale more favorably with the
number of electrons.

An implementation of ECS that clearly offers promise in this context is the
direct method of Bartlett and Stelbovics, which has now produced highly accurate
(e,2e) results for hydrogenic targets [100]. Since their implementation is based on a
marching algorithm for computing the scattered wave function, there is good reason
to believe that the method can eventually be applied to the four-body Coulomb
problem. Time-dependent wavepacket propagation methods also offer considerable
promise. Indeed, it has been demonstrated in model calculations by Pindzola, Mitnik
and Robicheaux[101] that explicit time propagation methods have scaling properties
that allow their application to three-electron systems. In another recent development,
we showed that it is possible to combine the idea of time propagation with that
of using exterior complex scaling to solve the driven, time-independent Schrédinger
equation [71]. The viability of the method was originally demonstrated for a model
3D breakup process involving only short-range interactions, but we have now used this
approach to study e-He ionization in the three-dimensional S-wave model [102].

For the three-body Coulomb problem, the time-independent approaches have
the distinct advantage that the analysis of the computed wave function to calculate
ionization amplitudes is relatively straightforward. However, with a multi-electron
target there are additional complications. The extraction of ionization cross sections
from a numerical representation of the scattered wave on a finite grid is substantially
more difficult with a multi-electron target than with a one-electron target. If one
attempts to compute the ionization cross sections from an integral expression for
the breakup amplitudes on a finite grid, one finds that, just as in the e-H case,
the results can be poisoned by the presence of discrete two-body channel terms in
the scattered wave. However, in contrast to the e-H case, the simple expediant of
using Coulomb distorted waves does not eliminate the problem, since there is no
orthogonality relationship between such continuum functions and the bound states
of a multi-electron target. One partial, and not entirely satisfactory, remedy for this
problem is what we refer to as “asymptotic subtraction” [71, 103], in which elastic and
discrete excitation scattering amplitudes are computed and used to remove two-body
terms from the scattered wave. This technique was used in computing differential
ionization cross sections for the S-wave e-He problem [102].

For collisional ionization of multi-electron atoms, there are still many details to
be worked out and there are still open questions about what will ultimately prove to
be the best way to extract ionization cross sections from the wave functions once they
are available. Despite the challenges that remain, we are confident that benchmark
calculations on the electron-helium system, similar to those that now exist for the
electron collisions with hydrogenic targets, will appear in the next few years.
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