Near-surface monitoring strategies for geologic carbon dioxide storage verification

PDF Version Also Available for Download.

Description

Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO{sub 2}) and its storage in deep geologic formations. Geologic CO{sub 2} storage verification will be needed to ensure that CO{sub 2} is not leaking from the intended storage formation and seeping out of the ground. Because the ultimate failure of geologic CO{sub 2} storage occurs when CO{sub 2} seeps out of the ground into the atmospheric surface layer, and because elevated concentrations of CO{sub 2} near the ground surface can cause health, safety, and environmental risks, monitoring will need to be carried out in the near-surface environment. The detection ... continued below

Physical Description

54 pages

Creation Information

Oldenburg, Curtis M.; Lewicki, Jennifer L. & Hepple, Robert P. October 31, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO{sub 2}) and its storage in deep geologic formations. Geologic CO{sub 2} storage verification will be needed to ensure that CO{sub 2} is not leaking from the intended storage formation and seeping out of the ground. Because the ultimate failure of geologic CO{sub 2} storage occurs when CO{sub 2} seeps out of the ground into the atmospheric surface layer, and because elevated concentrations of CO{sub 2} near the ground surface can cause health, safety, and environmental risks, monitoring will need to be carried out in the near-surface environment. The detection of a CO{sub 2} leakage or seepage signal (LOSS) in the near-surface environment is challenging because there are large natural variations in CO{sub 2} concentrations and fluxes arising from soil, plant, and subsurface processes. The term leakage refers to CO{sub 2} migration away from the intended storage site, while seepage is defined as CO{sub 2} passing from one medium to another, for example across the ground surface. The flow and transport of CO{sub 2} at high concentrations in the near-surface environment will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of leakage and seepage show that CO{sub 2} concentrations can reach very high levels in the shallow subsurface even for relatively modest CO{sub 2} leakage fluxes. However, once CO{sub 2} seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO{sub 2} seepage. In natural ecological systems with no CO{sub 2} LOSS, near-surface CO{sub 2} fluxes and concentrations are controlled by CO{sub 2} uptake by photosynthesis, and production by root respiration, organic carbon biodegradation in soil, deep outgassing of CO{sub 2}, and by exchange of CO{sub 2} with the atmosphere. Existing technologies available for monitoring CO{sub 2} in the near-surface environment include (1) the infrared gas analyzer (IRGA) for measuring point concentrations using IR absorption by the CO{sub 2} molecule, (2) the accumulation chamber (AC) method for measuring soil CO{sub 2} fluxes at discrete points, (3) the eddy correlation (EC) tower that measures net flux over a given area, and (4) light distancing and ranging (LIDAR) that can measure CO{sub 2} concentrations over an integrated path. Novel technologies that could potentially be useful for CO{sub 2} concentration and flux measurement include hyperspectral remote sensing of vegetative stress as an indication of elevated CO{sub 2} concentrations, tunable lasers for long distance integrated concentration measurements, microelectronic mechanical systems (MEMS) that can be dispersed to make widespread point measurements, and trained animals such as dogs as used for landmine detection.

Physical Description

54 pages

Notes

OSTI as DE00840984

Source

  • Other Information: PBD: 31 Oct 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LBNL--54089
  • Grant Number: AC03-76SF00098
  • DOI: 10.2172/840984 | External Link
  • Office of Scientific & Technical Information Report Number: 840984
  • Archival Resource Key: ark:/67531/metadc785515

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 31, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 4, 2016, 1:44 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Oldenburg, Curtis M.; Lewicki, Jennifer L. & Hepple, Robert P. Near-surface monitoring strategies for geologic carbon dioxide storage verification, report, October 31, 2003; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc785515/: accessed April 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.