Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

PDF Version Also Available for Download.

Description

Fracture of AISI 4340 steel in concentrated sodium hydroxide solution has been monitored by measuring the coupling current that flows between the crack and the external surfaces. The results clearly demonstrate that positive current flows from the crack to the external cathodes (through the solution) during crack growth of AISI 4340 steel in concentrated (6 to12 M) sodium hydroxide solution at 70 C. The (electron) coupling current contains periodic noise that is attributed to fracture events occurring at the crack front, with the amplitude of the noise and the mean current increasing with crack growth rate. The characteristic shape of ... continued below

Physical Description

vp.

Creation Information

Macdonald, Digby D.; Liu, Sue; Sikora, Elizbieta & Liu, Jun June 1, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Fracture of AISI 4340 steel in concentrated sodium hydroxide solution has been monitored by measuring the coupling current that flows between the crack and the external surfaces. The results clearly demonstrate that positive current flows from the crack to the external cathodes (through the solution) during crack growth of AISI 4340 steel in concentrated (6 to12 M) sodium hydroxide solution at 70 C. The (electron) coupling current contains periodic noise that is attributed to fracture events occurring at the crack front, with the amplitude of the noise and the mean current increasing with crack growth rate. The characteristic shape of the individual transients in the noise at lower SCC crack growth rate is a rapid drop followed by slow recovery. The form of the noise in the coupling current during SCC at high NaOH concentration (8 M and 12 M) is attributed to overlap of many cracks propagating simultaneously through micro fracture events along grain boundaries. The discrete events, which have a dimension of about 49 {micro}m, are postulated to be hydrogen induced, and the mechanism of caustic cracking of AISI 4340 steel is considered to be hydrogen embrittlement along grain boundaries. Measurement of the electrochemical noise is shown to be capable of detecting and distinguishing between uniform corrosion and stress corrosion cracking in the steel/NaOH system. The coupling current data are consistent with a hydrogen embrittlement mechanism for crack advance.

Physical Description

vp.

Source

  • Other Information: PBD: 1 Jun 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-60219--2001
  • Grant Number: FG07-97ER62515
  • DOI: 10.2172/829897 | External Link
  • Office of Scientific & Technical Information Report Number: 829897
  • Archival Resource Key: ark:/67531/metadc785497

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2001

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 6:22 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 7

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Macdonald, Digby D.; Liu, Sue; Sikora, Elizbieta & Liu, Jun. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste, report, June 1, 2001; United States. (digital.library.unt.edu/ark:/67531/metadc785497/: accessed December 11, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.