A Comprehensive Study of the Solubility, Thermochemistry, Ion Exchange, and Precipitation Kinetics of NO3 Cancrinite and NO3 Sodalite

PDF Version Also Available for Download.

Description

NO3 cancrinite and NO3 sodalite haves been found as a common sodium alumino-silicate forming in strongly caustic alkaline aqueous solutions associated with radioactive High Level Waste (HLW) stored in many underground tanks and also in nuclear waste treatment facilities such as the Savannah River Site (SRS). The precipitation of alumino-silicate phases from caustic nuclear wastes has proven to be problematic in a number of processes in waste treatment facilities including radionuclide separations (cementation of columns by aluminosilicate phases), tank emptying (aluminosilicate tank heels), and condensation of wastes in evaporators (aluminosilicate precipitates in the evaporators, providing nucleation sites for growth of ... continued below

Physical Description

vp.

Creation Information

Colon, Carlos F. Joyce; Navrotsky, Alexandra; Krumhansl, James L. & Nyman, May June 1, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

NO3 cancrinite and NO3 sodalite haves been found as a common sodium alumino-silicate forming in strongly caustic alkaline aqueous solutions associated with radioactive High Level Waste (HLW) stored in many underground tanks and also in nuclear waste treatment facilities such as the Savannah River Site (SRS). The precipitation of alumino-silicate phases from caustic nuclear wastes has proven to be problematic in a number of processes in waste treatment facilities including radionuclide separations (cementation of columns by aluminosilicate phases), tank emptying (aluminosilicate tank heels), and condensation of wastes in evaporators (aluminosilicate precipitates in the evaporators, providing nucleation sites for growth of critical masses of radioactive actinide salts). Therefore, in order to prevent their formation an assessment of the relative stability, formation kinetics, and the ion-exchange characteristics of these two phases in HLW solutions needs to be investigated. The goals of this project are to: (1) Develop a robust equilibrium thermodynamic framework to accurately describe and predict the formation of NO3 cancrinite and NO3 sodalite. (2) Provide a comprehensive characterization of the solid precipitation rates and mechanisms using novel spectroscopic (e.g., NMR) and thermochemical techniques in conditions encountered in HLW waste solutions. (3) Characterize the precipitation kinetics of the aluminosilicates and study the effects of temperature and fluid composition. (4) Investigate the ion exchange capacity of these zeolitic phases with respect to radionuclides and RCRA metal species.

Physical Description

vp.

Source

  • Other Information: PBD: 1 Jun 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-81959-2003
  • Grant Number: FG07-01ER63298
  • DOI: 10.2172/834993 | External Link
  • Office of Scientific & Technical Information Report Number: 834993
  • Archival Resource Key: ark:/67531/metadc785475

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Jan. 10, 2018, 3:43 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Colon, Carlos F. Joyce; Navrotsky, Alexandra; Krumhansl, James L. & Nyman, May. A Comprehensive Study of the Solubility, Thermochemistry, Ion Exchange, and Precipitation Kinetics of NO3 Cancrinite and NO3 Sodalite, report, June 1, 2003; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc785475/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.