Pressure-dependent photoluminescence study of ZnO nanowires

PDF Version Also Available for Download.

Description

The pressure dependence of the photoluminescence (PL) transition associated with the fundamental band gap of ZnO nanowires has been studied at pressures up to 15 GPa. ZnO nanowires are found to have a higher structural phase transition pressure around 12 GPa as compared to 9.0 GPa for bulk ZnO. The pressure-induced energy shift of the near band-edge luminescence emission yields a linear pressure coefficient of 29.6 meV/GPa with a small sublinear term of -0.43 meV/GPa{sup 2}. An effective hydrostatic deformation potential -3.97 eV for the direct band gap of the ZnO nanowires is derived from the result.

Physical Description

13 pages

Creation Information

Shan, W.; Walukiewicz, W.; Ager III, J.W.; Yu, K.M.; Zhang, Y.; Mao, S.S. et al. September 13, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The pressure dependence of the photoluminescence (PL) transition associated with the fundamental band gap of ZnO nanowires has been studied at pressures up to 15 GPa. ZnO nanowires are found to have a higher structural phase transition pressure around 12 GPa as compared to 9.0 GPa for bulk ZnO. The pressure-induced energy shift of the near band-edge luminescence emission yields a linear pressure coefficient of 29.6 meV/GPa with a small sublinear term of -0.43 meV/GPa{sup 2}. An effective hydrostatic deformation potential -3.97 eV for the direct band gap of the ZnO nanowires is derived from the result.

Physical Description

13 pages

Notes

OSTI as DE00840449

Source

  • Journal Name: Applied Physics Letters; Journal Volume: 86; Other Information: Submitted to Applied Physics Letters: Volume 86; Journal Publication Date: 2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--56318
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 840449
  • Archival Resource Key: ark:/67531/metadc785406

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 13, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • June 15, 2016, 1:07 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 13

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Shan, W.; Walukiewicz, W.; Ager III, J.W.; Yu, K.M.; Zhang, Y.; Mao, S.S. et al. Pressure-dependent photoluminescence study of ZnO nanowires, article, September 13, 2004; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc785406/: accessed June 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.