Development of Combinatorial Methods for Alloy Design and Optimization

PDF Version Also Available for Download.

Description

The primary goal of this research was to develop a comprehensive methodology for designing and optimizing metallic alloys by combinatorial principles. Because conventional techniques for alloy preparation are unavoidably restrictive in the range of alloy composition that can be examined, combinatorial methods promise to significantly reduce the time, energy, and expense needed for alloy design. Combinatorial methods can be developed not only to optimize existing alloys, but to explore and develop new ones as well. The scientific approach involved fabricating an alloy specimen with a continuous distribution of binary and ternary alloy compositions across its surface--an ''alloy library''--and then using ... continued below

Physical Description

9.2

Creation Information

Pharr, George M.; George, Easo P. & Santella, Michael L July 1, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The primary goal of this research was to develop a comprehensive methodology for designing and optimizing metallic alloys by combinatorial principles. Because conventional techniques for alloy preparation are unavoidably restrictive in the range of alloy composition that can be examined, combinatorial methods promise to significantly reduce the time, energy, and expense needed for alloy design. Combinatorial methods can be developed not only to optimize existing alloys, but to explore and develop new ones as well. The scientific approach involved fabricating an alloy specimen with a continuous distribution of binary and ternary alloy compositions across its surface--an ''alloy library''--and then using spatially resolved probing techniques to characterize its structure, composition, and relevant properties. The three specific objectives of the project were: (1) to devise means by which simple test specimens with a library of alloy compositions spanning the range interest can be produced; (2) to assess how well the properties of the combinatorial specimen reproduce those of the conventionally processed alloys; and (3) to devise screening tools which can be used to rapidly assess the important properties of the alloys. As proof of principle, the methodology was applied to the Fe-Ni-Cr ternary alloy system that constitutes many commercially important materials such as stainless steels and the H-series and C-series heat and corrosion resistant casting alloys. Three different techniques were developed for making alloy libraries: (1) vapor deposition of discrete thin films on an appropriate substrate and then alloying them together by solid-state diffusion; (2) co-deposition of the alloying elements from three separate magnetron sputtering sources onto an inert substrate; and (3) localized melting of thin films with a focused electron-beam welding system. Each of the techniques was found to have its own advantages and disadvantages. A new and very powerful technique for rapid structural and chemical characterization of alloy libraries was developed based on high intensity x-radiation available at synchrotron sources such as the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). With the technique, structural and chemical characterization of up to 2500 discrete positions on a library can made in a period of less than 4 hours. Among the parameters that can be measured are the chemical composition, crystal structure, lattice parameters, texture, and grain size. From these, one can also deduce isothermal sections of ternary phase diagrams. The equipment and techniques needed to do this are now in place for use in future combinatorial studies at the ORNL beam line at the APS. In conjunction with the chemical and structural investigations, nanoindentation techniques were developed to investigate the mechanical properties of the combinatorial libraries. The two primary mechanical properties of interest were the elastic modulus, E, and hardness, H, both of which were measured on alloy library surfaces with spatial resolutions of better than 1 m. A nanoindentation testing system at ORNL was programmed to make a series of indentations at specified locations on the library surface and automatically collect and store all the data needed to obtain hardness and modulus as a function of position. Approximately 200 indentations can be made during an overnight run, which allows for mechanical property measurement over a wide range of chemical composition in a relatively short time. Since the materials based on the Fe-Ni-Cr system often find application in highly carburizing and harsh chemical environments, simple techniques were developed to assess the resistance of Fe-Ni-Cr alloy libraries to carburization and corrosion. Alloy libraries were carburized by standard techniques, and the effectiveness of the carburization at various points along the sample surface was assessed by nanoindentation hardness measurement. Corrosion tests were conducted by placing library specimens in highly corrosive aqueous environments, with the corrosion resistance assessed using surface profilometry to measure the local surface recession relative to inert markers. Collectively, the suite of newly developed tools and techniques paves the way for combinatorial design, discovery, and optimization of a wide variety of alloys, thus leading to improved materials in manner that crosscuts the needs of a large number of energy intensive industries. Among those that would be directly impacted are: aluminum, chemicals, forest products, glass, metal casting, petroleum, steel, forging, heat treating, and welding.

Physical Description

9.2

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ORNL/TM-2005/133
  • Grant Number: FC36-02ID14251
  • DOI: 10.2172/842122 | External Link
  • Office of Scientific & Technical Information Report Number: 842122
  • Archival Resource Key: ark:/67531/metadc785309

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 2005

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Jan. 2, 2018, 3:19 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 10

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Pharr, George M.; George, Easo P. & Santella, Michael L. Development of Combinatorial Methods for Alloy Design and Optimization, report, July 1, 2005; Knoxville, Tennessee. (digital.library.unt.edu/ark:/67531/metadc785309/: accessed May 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.