Sequestration of Radionuclides and Heavy Metal by Hydroxyapatite Doped with Fe, Cu and Sn

PDF Version Also Available for Download.

Description

Apatite, Ca{sub 5}(PO{sub 4}){sub 3}(F,OH,Cl) (P6{sub 3}/m, Z=2), is the most abundant phosphate mineral on Earth. The end-member hydroxyapatite, Ca{sub 5}(PO{sub 4}){sub 3}OH (P2{sub 1}/b), is the primary mineral component in bones and teeth and tends to scavenge and sequester heavy metals in the human body. Hydroxyapatite has also been shown to be effective at sequestering radionuclides and heavy metals in certain natural systems (Dybowska et al., 2004). Hydroxyapatite has been the focus of many laboratory studies and is utilized for environmental remediation of contaminated sites (Moore et al., 2002). The crystal structure of apatite tolerates a great deal of ... continued below

Physical Description

1 pages

Creation Information

Helean, K.B. & Moore, R.C. January 28, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Apatite, Ca{sub 5}(PO{sub 4}){sub 3}(F,OH,Cl) (P6{sub 3}/m, Z=2), is the most abundant phosphate mineral on Earth. The end-member hydroxyapatite, Ca{sub 5}(PO{sub 4}){sub 3}OH (P2{sub 1}/b), is the primary mineral component in bones and teeth and tends to scavenge and sequester heavy metals in the human body. Hydroxyapatite has also been shown to be effective at sequestering radionuclides and heavy metals in certain natural systems (Dybowska et al., 2004). Hydroxyapatite has been the focus of many laboratory studies and is utilized for environmental remediation of contaminated sites (Moore et al., 2002). The crystal structure of apatite tolerates a great deal of distortion caused by extensive chemical substitutions. Metal cations (e.g. REE, actinides, K, Na, Mn, Ni, Cu, Co, Zn, Sr, Ba, Pb, Cd, Fe) substitute for Ca, and oxyanions (e.g. AsO{sub 4}{sup 3-}, SO{sub 4}{sup 2-}, CO{sub 3}{sup 2-}, SiO{sub 4}{sup 4-}, CrO{sub 4}{sup 2-}) replace PO{sub 4}{sup 3-} through a series of coupled substitutions that preserve electroneutrality. Owing to the ability of apatite to incorporate ''impurities'' (including actinides) gives rise to its proposed use as a waste form for radionuclides. Recent work at Sandia National Laboratory demonstrated that hydroxyapatite has a strong affinity for U, Pu, Np, Sr and Tc reduced from pertechnetate (TcO{sub 4}{sup -}) by SnCl{sub 2} (Moore et al., 2002). Based on these earlier promising results, an investigation was initiated into the use of apatite-type materials doped with aliovalent cations including Fe, Cu and Sn as Tc-scavengers. Synthetic Fe and Cu-doped hydroxyapatite samples were prepared by precipitation of Ca, from Ca-acetate, and P, from ammonium phosphate. The Fe and Cu were introduced as chlorides into the Ca-acetate solution. Stannous chloride was used as a reducing agent and was apparently incorporated into the crystal structures of the hydroxyapatite samples in small, as yet undetermined quantities.

Physical Description

1 pages

Notes

INIS; OSTI as DE00840147

Source

  • Other Information: PBD: 28 Jan 2005

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: NONE
  • DOI: 10.2172/840147 | External Link
  • Office of Scientific & Technical Information Report Number: 840147
  • Archival Resource Key: ark:/67531/metadc785263

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 28, 2005

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Feb. 11, 2016, 12:09 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Helean, K.B. & Moore, R.C. Sequestration of Radionuclides and Heavy Metal by Hydroxyapatite Doped with Fe, Cu and Sn, report, January 28, 2005; Las Vegas, Nevada. (digital.library.unt.edu/ark:/67531/metadc785263/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.