Vlasov simulations of beams with a moving grid

PDF Version Also Available for Download.

Description

Thanks to the rapid increase of computing power in recent years, simulations of plasmas and particle beams based on direct solution of the Vlasov equation on a multi-dimensional phase-space grid are becoming attractive as an alternative to Particle-In-Cell (PIC) simulations. Their strength lies essentially in the fact that they are noiseless and that all parts of phase space, including the tail of the distribution, are equally well resolved. Their major drawback is that, for inhomogeneous systems, many of the grid points (where no particles are present) are wasted. This is especially the case for beam simulations where the beam moves ... continued below

Creation Information

Sonnendrucker, E.; Filbet, F.; Friedman, A.; Oudet, E. & Vay, J-L. October 3, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Thanks to the rapid increase of computing power in recent years, simulations of plasmas and particle beams based on direct solution of the Vlasov equation on a multi-dimensional phase-space grid are becoming attractive as an alternative to Particle-In-Cell (PIC) simulations. Their strength lies essentially in the fact that they are noiseless and that all parts of phase space, including the tail of the distribution, are equally well resolved. Their major drawback is that, for inhomogeneous systems, many of the grid points (where no particles are present) are wasted. This is especially the case for beam simulations where the beam moves rapidly through the phase space (due to varying alternating-gradient focusing forces, for example). This inefficiency has made such Vlasov simulations unsuitable for those cases. One of the methods which has proven very efficient for the direct resolution of the Vlasov equation is the semi-Lagrangian method [1, 3]. It consists in updating the values of the distribution function at the grid nodes by following the characteristics ending at these nodes backwards and interpolating the value at the bottom of the characteristics from the known values at the previous time step. In general the interpolation grid is fixed, but this is not mandatory. This paper introduces the concept of a moving grid which is mapped at each time step from a logical uniform grid to the beam, so that it contains the whole beam without needing too many points with vanishing values of the distribution function. In order to implement this new method, we introduce a new time stepping algorithm which does not rely on the time splitting procedure traditionally used in Vlasov solvers.

Source

  • 18th International Conference on the NumericalSimulation of Plasma, Cape Cod, Maine, 2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--53926
  • Report No.: HIFAN 1164
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 860737
  • Archival Resource Key: ark:/67531/metadc785203

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 3, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 1, 2016, 7:55 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sonnendrucker, E.; Filbet, F.; Friedman, A.; Oudet, E. & Vay, J-L. Vlasov simulations of beams with a moving grid, article, October 3, 2003; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc785203/: accessed June 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.