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ABSTRACT 

Model verification and validation (V&V) is an enabling methodology for the development of computational models 

that can be used to make engineering predictions with quantified confidence. Model V&V procedures are needed by 

government and industry to reduce the time, cost, and risk associated with full-scale testing of products, materials, 

and weapon systems. Quantifying the confidence and predictive accuracy of model calculations provides the 

decision-maker with the information necessary for making high-consequence decisions. The development of 

guidelines and procedures for conducting a model V&V program are currently being defined by a broad spectrum of 

researchers. This report reviews the concepts involved in such a program. 

 

Model V&V is a current topic of great interest to both government and industry. In response to a ban on the 

production of new strategic weapons and nuclear testing, the Department of Energy (DOE) initiated the Science-

Based Stockpile Stewardship Program (SSP). An objective of the SSP is to maintain a high level of confidence in 

the safety, reliability, and performance of the existing nuclear weapons stockpile in the absence of nuclear testing. 

This objective has challenged the national laboratories to develop high-confidence tools and methods that can be 

used to provide credible models needed for stockpile certification via numerical simulation. 

 

There has been a significant increase in activity recently to define V&V methods and procedures. The U.S. 

Department of Defense (DoD) Modeling and Simulation Office (DMSO) is working to develop fundamental 

concepts and terminology for V&V applied to high-level systems such as ballistic missile defense and battle 

management simulations. The American Society of Mechanical Engineers (ASME) has recently formed a Standards 

Committee for the development of V&V procedures for computational solid mechanics models. The Defense 

Nuclear Facilities Safety Board (DNFSB) has been a proponent of model V&V for all safety-related nuclear facility 

design, analyses, and operations. In fact, DNFSB 2002-11 recommends to the DOE and National Nuclear Security 

Administration (NNSA) that a V&V process be performed for all safety related software and analysis. 

 

Model verification and validation are the primary processes for quantifying and building credibility in numerical 

models. Verification is the process of determining that a model implementation accurately represents the developer’s 

conceptual description of the model and its solution. Validation is the process of determining the degree to which a 

model is an accurate representation of the real world from the perspective of the intended uses of the model. Both 

verification and validation are processes that accumulate evidence of a model’s correctness or accuracy for a 

specific scenario; thus, V&V cannot prove that a model is correct and accurate for all possible scenarios, but, rather, 

it can provide evidence that the model is sufficiently accurate for its intended use. 

 

                                                           
1 Letter from John T. Conway (Chairman, Defense Nuclear Facilities Safety Board) to Spencer Abraham (Secretary 
of Energy) dated 23 September 2002. 
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Model V&V is fundamentally different from software V&V. Code developers developing computer programs 

perform software V&V to ensure code correctness, reliability, and robustness. In model V&V, the end product is a 

predictive model based on fundamental physics of the problem being solved. In all applications of practical interest, 

the calculations involved in obtaining solutions with the model require a computer code, e.g., finite element or finite 

difference analysis. Therefore, engineers seeking to develop credible predictive models critically need model V&V 

guidelines and procedures. 

 

The expected outcome of the model V&V process is the quantified level of agreement between experimental data 

and model prediction, as well as the predictive accuracy of the model. This report attempts to describe the general 

philosophy, definitions, concepts, and processes for conducting a successful V&V program. This objective is 

motivated by the need for highly accurate numerical models for making predictions to support the SSP, and also by 

the lack of guidelines, standards and procedures for performing V&V for complex numerical models. 
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GLOSSARY 

Accreditation ..................................  Official certification that a model is acceptable for use for a specific 
purpose (DOD/DMSO, 1994). 

Adequacy........................................  The decision that the model fidelity is sufficient for the intended use. 
Calculation Verification .................  Process of determining the solution accuracy of a particular calculation. 
Calibration......................................  Process of adjusting numerical or physical modeling parameters in the 

computational model for the purpose of improving agreement with 
experimental data. 

Calibration Experiment ..................  Experiment performed for the purpose of fitting (calibrating) model 
parameters. 

Certification....................................  Written guarantee that a system or component complies with its specified 
requirements and is acceptable for operational use (IEEE, 1990). 

Code ...............................................  Computer implementation of algorithms developed to facilitate the 
formulation and approximate solution of a class of models. 

Code Verification ...........................  Process of determining that the computer code is correct and functioning as 
intended. 

Computer Model.............................  Numerical implementation of the mathematical model, usually in the form 
of numerical discretization, solution algorithms, and convergence criteria. 

Conceptual Model ..........................  Collection of assumptions, algorithms, relationships, and data that describe 
the reality of interest from which the mathematical model and validation 
experiment can be constructed. 

Confidence .....................................  Probability that a numerical estimate will lie within a specified range. 
Error ...............................................  A recognizable deficiency in any phase or activity of modeling and 

simulation that is not due to lack of knowledge. 
Experiment .....................................  Observation and measurement of a physical system to improve fundamental 

understanding of physical behavior, improve mathematical models, 
estimate values of model parameters, and assess component or system 
performance. 

Experimental Data ..........................  Raw or processed observations (measurements) obtained from performing 
an experiment. 

Experimental Outcomes .................  Measured observations that reflect both random variability and systematic 
error. 

Experiment Revision ......................  The process of changing experimental test design, procedures, or 
measurements to improve agreement with simulation outcomes. 

Fidelity ...........................................  The difference between simulation and experimental outcomes. 
Field Experiment ............................  Observation of system performance under fielded service conditions. 
Inference.........................................  Drawing conclusions about a population based on knowledge of a sample. 
Irreducible Uncertainty...................  Inherent variation associated with the physical system being modeled. 
Laboratory Experiment...................  Observation of physical system performance under controlled conditions. 
Mathematical Model.......................  The mathematical equations, boundary values, initial conditions, and 

modeling data needed to describe the conceptual model. 
Model .............................................  Conceptual/mathematical/numerical description of a specific physical 

scenario, including geometrical, material, initial, and boundary data.  
Model Revision ..............................  The process of changing the basic assumptions, structure, parameter 

estimates, boundary values, or initial conditions of a model to improve 
agreement with experimental outcomes. 

Nondeterministic Method...............  An analysis method that quantifies the effect of uncertainties on the 
simulation outcomes. 

Performance Model ........................  A computational representation of a model’s performance (or failure), 
based usually on one or more model responses. 

Prediction .......................................  Use of a model to foretell the state of a physical system under conditions 
for which the model has not been validated. 

Pretest Calculations ........................  Use of simulation outcomes to help design the validation experiment. 
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Reality of Interest ...........................  The particular aspect of the world (unit problem, component problem, 
subsystem or complete system) to be measured and simulated. 

Reducible Uncertainty ....................  Potential deficiency that is due to lack of knowledge, e.g., incomplete 
information, poor understanding of physical process, imprecisely defined or 
nonspecific description of failure modes, etc. 

Risk ................................................  The probability of failure combined with the consequence of failure.  
Risk Tolerance................................  The consequence of failure that one is willing to accept. 
Simulation ......................................  The ensemble of models—deterministic, load, boundary, material, 

performance, and uncertainty—that are exercised to produce a simulation 
outcome.  

Simulation Outcome.......................  Output generated by the computer model that reflect both the deterministic 
and nondeterministic response of the model. 

Uncertainty .....................................  A potential deficiency in any phase or activity of the modeling or 
experimentation process that is due to inherent variability (irreducible 
uncertainty) or lack of knowledge (reducible uncertainty). 

Uncertainty Quantification .............  The process of characterizing all uncertainties in the model and experiment, 
and quantifying their effect on the simulation and experimental outcomes. 

Validation .......................................  The process of determining the degree to which a model is an accurate 
representation of the real world from the perspective of the intended uses of 
the model. (AIAA, 1998) 

Validation Experiment....................  Experiments that are performed to generate high-quality data for the 
purpose of validating a model. 

Validation Metric ...........................  A measure that defines the level of accuracy and precision of a simulation. 
Verification.....................................  The process of determining that a model implementation accurately 

represents the developer’s conceptual description of the model and the 
solution to the model. (AIAA, 1998) 
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1.0 INTRODUCTION 

1.1 Background and Motivation 

Current arms control agreements have provided the impetus for national directives to cease production of new 

strategic weapons and end nuclear testing. In response to this challenge, the U.S. Department of Energy (DOE) 

initiated the Science-Based Stockpile Stewardship Program (SSP). An objective of the SSP is to maintain a high 

level of confidence in the safety, reliability, and performance of the existing nuclear weapons stockpile in the 

absence of nuclear testing. This objective has challenged the national laboratories to develop high-confidence tools 

and methods needed for stockpile certification via numerical simulation. Models capable of producing credible 

predictions are essential to support the SSP certification goal. The process of establishing credibility requires a 

well-planned and executed Model Verification and Validation (V&V) program. 

 

The current ban on nuclear testing does not include experiments that are either nonexplosive—using a pulsed 

reactor, for example—or subcritical, involving no self-sustaining nuclear reaction. Over the past 30 years, 

Los Alamos National Laboratory (LANL), under the auspices of DOE, has been conducting confined high explosion 

experiments to develop a better understanding of the behavior of materials under extremely high pressures and 

temperatures. These experiments are usually performed in a containment vessel to prevent the release of explosion 

products to the environment. Vessel designs utilize sophisticated and advanced three-dimensional (3D) numerical 

models that address both the detonation hydrodynamics and the vessel’s highly dynamic nonlinear structural 

response. It is of paramount importance that numerical models of the containment vessels be carefully developed 

and validated to ensure that explosion products and debris from detonations of high-explosive assembly experiments 

are confined and to produce a high level of confidence and credibility in predictions made with the models. 

 

The Dynamic Experimentation (DX) Division at LANL has the overall responsibility for design, analysis, 

manufacture, and implementation of new high-strength, low-alloy steel containment vessels. Because numerical 

models are used in the design of containment vessels, a model V&V process is needed to guide the development of 

the models and to quantify the confidence in predictions produced by these models. The expected outcome of the 

model V&V process is the quantified level of agreement between experimental data and model prediction, as well 

as the predictive accuracy of the model. This outcome is intended to provide a sound and technically defensible 

basis to support decisions regarding containment-vessel certification. It is important to note that while the LANL 

DynEx Vessel Program motivated the development of this report, the concepts presented here are general and 

applicable to any program requiring the use of numerical models. 
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Verification and validation are the primary processes for quantifying and building confidence (or credibility) in 

numerical models. The V&V definitions used in this report are adopted from the 1998 AIAA Guide, Ref. [1]: 

 

• Verification is the process of determining that a model implementation accurately represents the 

developer’s conceptual description of the model and the solution to the model. 

• Validation is the process of determining the degree to which a model is an accurate representation of 

the real world from the perspective of the intended uses of the model. 

 

Verification and validation are processes that collect evidence of a model’s correctness or accuracy for a specific 

scenario; thus, V&V cannot prove that a model is correct and accurate for all possible conditions and applications, 

but, rather, it can provide evidence that a model is sufficiently accurate. Therefore, the V&V process is completed 

when sufficiency is reached. 

 

Verification is concerned with identifying and removing errors in the model by comparing numerical solutions to 

analytical or highly accurate benchmark solutions. Validation, on the other hand, is concerned with quantifying the 

accuracy of the model by comparing numerical solutions to experimental data. In short, verification deals with the 

mathematics associated with the model, whereas validation deals with the physics associated with the model. [9] 

Because mathematical errors can eliminate the impression of correctness (by giving the right answer for the wrong 

reason), verification should be performed to a sufficient level before the validation activity begins. 

 

Software V&V is fundamentally different from model V&V. Software V&V is required when a computer program 

or code is the end product. Model V&V is required when a predictive model is the end product. A code is the 

computer implementation of algorithms developed to facilitate the formulation and approximate solution of a class 

of models. For example, ABAQUS or DYNA3D permit the user to formulate a specific model, e.g., the DynEx 

vessel subjected to internal blast loading with specific boundary conditions, and effect an approximate solution to 

that model. A model includes more than the code. A model is the conceptual/mathematical/numerical description of 

a specific physical scenario, including geometrical, material, initial, and boundary data. 

 

The verification activity can be divided into code verification and calculation verification. When one is performing 

code verification, problems are devised to demonstrate that the code can compute an accurate solution. Code 

verification problems are constructed to verify code correctness, robustness, and specific code algorithms. When one 

is performing calculation verification, a model that is to be validated is exercised to demonstrate that the model is 

computing a sufficiently accurate solution. The most common type of calculation-verification problem is a grid 

convergence study to provide evidence that a sufficiently accurate solution is being computed. 
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Numerical models can be used to simulate multiple and/or coupled physics such as solid mechanics, structural 

dynamics, hydrodynamics, heat conduction, fluid flow, transport, chemistry, and acoustics. These models can 

produce response measures such as stress, strain, or velocity time histories, or failure measures such as crack 

initiation, crack growth, fatigue life, net section rupture, or critical corrosion damage. For example, a DYNA3D 

response model can compute a stress time history that is used as input to a crack-growth model to compute fatigue 

life. The model will also include input and algorithms needed to quantify the uncertainties associated with the 

model. 

 

Model V&V is undertaken to quantify confidence and build credibility in a numerical model for the purpose of 

making a prediction. Ref. [1] defines prediction as “use of a computational model to foretell the state of a physical 

system under conditions for which the computational model has not been validated.” The predictive accuracy of the 

model must then reflect the strength of the inference being made from the validation database to the prediction. 

If necessary, one can improve the predictive accuracy of the model through additional experiments, information, 

and/or experience. 

 

The requirement that the V&V process quantify the predictive accuracy of the model underscores the key role of 

uncertainty quantification in the model-validation process. Nondeterminism refers to the existence of errors and 

uncertainties in the outputs of computational simulations due to inherent and/or subjective uncertainties in the 

model. Likewise, the measurements that are made to validate these simulation outcomes also contain errors and 

uncertainties. While the experimental outcome is used as the reference for comparison, the V&V process does not 

presume the experiment to be more accurate than the simulation. Instead, the goal is to quantify the uncertainties in 

both experimental and simulation results such that the model fidelity requirements can be assessed (validation) and 

the predictive accuracy of the model quantified. 

1.2 Objective 

The objective of this report is to provide the philosophy, general concepts, and processes for conducting a successful 

model V&V program. This objective is motivated by the need for highly accurate numerical models for making 

predictions to support the SSP and by the current lack of guidelines, standards, and procedures for performing model 

V&V. 

 

This report has been developed to meet the requirements of the DynEx Project Quality Assurance Program [2], 

which defines implementation of DOE Order 414.1A, Chg. 1: 7-12-01, Quality Assurance, and Code of Federal 

Regulation, Title 10 CFR Ch. III (1–1–02 Edition) Subpart A—Quality Assurance Requirements 830.120 Scope, 

830.121 Quality Assurance Program, and 830.122 Quality Assurance Criteria, and section 5.6 – Design Control of 

DynEx Quality Assurance Plan, DV-QAP. This report meets, in part, DNFSB Recommendation 2002-1, Quality 

Assurance for Safety-Related Software. The DynEx Vessel Project leader, DX-5 group leader, and the DX division 

leader are responsible for implementation of this report. 
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A key component of the integration of model V&V into the quality-assurance process is the documentation of all 

relevant activities, assessments of V&V program adequacy and completeness, and peer reviews at various stages of 

the program. Relevant activities include a statement of V&V requirements; development of the conceptual, 

mathematical, and numerical models; design and performance of validation experiments; incorporation of 

independent data into the V&V program; code and model verification efforts; and validation comparisons. The level 

of rigor required for a given model will be determined by a graded approach consistent with other activities in the 

overall DynEx program. 

1.3 Approach 

This report has been built on published contributions from many other organizations concerned with V&V, the 

AIAA Computational Fluid Dynamics V&V Committee work [1], and the activities of the recently formed (2001) 

ASME Standards Committee on Verification and Validation in Computational Solid Mechanics (Performance Test 

Codes No. 60). [3] 

 

This report reflects a large body of knowledge dispersed throughout several scientific and engineering communities. 

The Institute of Electrical and Electronics Engineers (IEEE), the software quality-assurance (SQA) community, the 

American Nuclear Society (ANS), and the International Organization for Standardization (ISO) have developed 

V&V guidelines. However, these guidelines were written for the purpose of performing software V&V as opposed 

model V&V, which is our focus. Another organization working on V&V is the Defense Modeling and Simulation 

Office (DMSO) of the Department of Defense (DoD). DMSO is focused on V&V for high-level systems such as 

ballistic missile defense and battlefield simulations. [4] These high-level systems are different from computational 

mechanics models in that they attempt to simulate a large number of nonphysical behaviors, such as human decision, 

past experience, and circumstantial data, e.g., photographs of past battle-damage assessments. 

 

The ASME Standards V&V Committee, the Air Force Research Laboratory (AFRL), and the National Aeronautics 

and Space Administration (NASA) have recently embarked on the development of guidelines and recommended 

practices for model V&V to provide a foundation for increased use of numerical simulation for certification. In 

addition, various groups within the DOE laboratories (Sandia, Los Alamos, and Lawrence Livermore) are generating 

a considerable body of research work in this area. [5, 6, 7] This report incorporates information from all of these 

contributions and provides additions for complex numerical modeling, the role of uncertainty quantification, the 

design of validation experiments, the use of statistical analysis for comparison of validation metrics, and 

establishment of a model’s predictive accuracy. 
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2.0 VERIFICATION AND VALIDATION PHILOSOPHY 

A high level schematic of the V&V process is shown in Figure 1. This graphical representation is a derivative of a 

diagram developed by the Society for Computer Simulation (SCS) in 1979 and is referred to as the Sargent Circle. 

[8] This diagram provides a simplistic illustration of the modeling and simulation activities (black solid lines) and 

the assessment activities (red dashed lines) involved in Model V&V. 

 

In Figure 1, the Reality of Interest represents the physical system for which data is being obtained. Later in this 

report we will describe a hierarchy of experiments for building the validation database, beginning with simple 

(single physics) unit problems and ending with the complete system. Consequently, the Reality of Interest represents 

the particular problem being studied, whether a unit problem, component problem, subsystem, or the complete 

system. The V&V of a complete system will necessarily require the process shown in Figure 1 to be repeated 

multiple times as the model development progresses from unit problems to the complete system. 

 

The Mathematical Model comprises the conceptual model, mathematical equations, and modeling data needed to 

describe the Reality of Interest. The Mathematical Model will usually take the form of the partial differential 

equations (PDEs), constitutive equations, geometry, initial conditions, and boundary conditions needed to describe 

mathematically the relevant physics. 

 

 

Figure 1: Simplified view of the model verification and validation process. [8] 
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The Computer Model represents the implementation of the Mathematical Model, usually in the form of numerical 

discretization, solution algorithms, miscellaneous parameters associated with the numerical approximation, and 

convergence criteria. The Computer Model comprises the computer program (code), conceptual and mathematical 

modeling assumptions, code inputs, constitutive model and inputs, grid size, solution options, and tolerances. 

Additionally, the Mathematical and Computer Model may include a performance (or failure) model, as well as an 

uncertainty analysis method, solution options, and tolerances. 

 

The process of selecting important features and associated mathematical approximations needed to represent the 

Reality of Interest in the Mathematical Model is termed Modeling. Assessing the correctness of the Modeling is 

termed Confirmation. The Verification activity focuses on the identification and removal of errors in the Software 

Implementation of the Mathematical Model. 

 

As will be discussed in more detail in a subsequent section, Verification can be divided into at least two distinct 

activities: Code Verification and Calculation Verification. Code Verification focuses on the identification and 

removal of errors in the code. Calculation Verification focuses on the quantification of errors introduced during 

application of the code to a particular simulation. Arguably, the most important Calculation Verification activity is 

performing a grid or time convergence study (successively refining the mesh or time step until a sufficient level of 

accuracy is obtained). 

 

As the final phase, the Validation activity aims to quantify the accuracy of the model through comparisons of 

experimental data with Simulation Outcomes from the Computer Model. Validation is an ongoing activity as 

experiments are improved and/or parameter ranges are extended. In the strictest sense, one cannot validate a 

complete model but rather a model calculation or range of calculations with a code for a specific class of problems. 

Nevertheless, this report will use the more widely accepted phrase “model validation” instead of the correct phrase 

“calculation validation.” 

 

Although Figure 1 is effective for communicating the major concepts involved in model V&V, several important 

activities are not shown. Figure 1 does not clearly represent 1) the various activities involved in designing, 

performing, and presenting experimental results; 2) the parallel and cooperative role of experimentation and 

simulation, 3) the quantification of uncertainties in both experimental and simulation outcomes, and 4) an objective 

mechanism for improving agreement between experiment and simulation. Figure 2 expands on Figure 1, providing 

more detail to address these and other shortcomings. 

 

In Figure 2, the right branch illustrates the process of developing and exercising the model, and the left branch 

illustrates the process of obtaining relevant and high-quality experimental data via physical testing. The closed 

boxes denote objects or data, connectors in black solid lines denote modeling or experimental activities, and the 

connectors in dashed red lines denote assessment activities. 
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Figure 2: Detailed model development, verification, and validation process. 

 

The Mathematical Model shown in Figure 1 is divided into a Conceptual Model and a Mathematical Model in 

Figure 2. Ideally, the model developer and experimenter co-develop the Conceptual Model. Developing the 

Conceptual Model involves identifying the computational objective, the required level of agreement between the 

experiment and simulation outcomes, the domain of interest, all important physical processes and assumptions, the 

failure mode of interest, and the validation metrics (quantities to be measured and the basis for comparison). 

 

Once the Conceptual Model is developed, the modeler constructs the Mathematical Model, and the experimenter 

designs the Validation Experiment. The Mathematical Model is a set of mathematical equations intended to describe 

physical reality. In mechanics, the Mathematical Model includes the conservation equations for mass, momentum, 

and (sometimes) energy, the specification of the spatial and temporal domain, the initial and boundary conditions, 

the constitutive equations, and the relationships describing the model’s uncertainty. 
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The Computer Model is the implementation of the equations developed in the Mathematical Model, usually in the 

form of numerical discretization, solution algorithms, and convergence criteria. The Computer Model is generally a 

numerical procedure (finite element, finite difference, etc.) for solving the equations prescribed in the Mathematical 

Model with a computer code. The codes used for mechanics problems typically include methods for discretizing the 

equations in space and time, along with algorithms for solving the approximate equations that result. 

 

A portion of the Computer Model represents the nondeterministic solution method, uncertainty characterizations, 

and associated convergence criteria. Typical nondeterministic theories include probabilistic methods, fuzzy sets, 

evidence theory, etc. Uncertainties are characterized in the form of the model used to represent the uncertainty—for 

example, a probability distribution used to represent the variation in elastic modulus, or intervals used to represent 

bounded inputs. Uncertainty Quantification is performed to quantify the effect of all input and model form 

uncertainties on the computed simulation outcomes. Thus, in addition to the model response, Simulation Outcomes 

include quantified error (or confidence) bounds on the computed model response. 

 

Code and Calculation Verification assessments are performed on the Computer Model to identify and eliminate 

errors in programming, insufficient grid resolution, solution tolerances, and finite precision arithmetic. Code and 

Calculation Verification are discussed in detail in a subsequent section. 

 

On the experimental (left) side of Figure 2, a physical experiment is conceived and designed. The result is a 

Validation Experiment. The purpose of a Validation Experiment is to provide information needed to validate the 

model; therefore, all assumptions must be understood, well defined, and controlled in the experiment. To assist with 

this process, Pretest Calculations (including sensitivity analysis) can be performed, for example, to identify the most 

effective locations and types of measurements needed from the experiment. These data will include not only 

response measurements, but also measurements needed to define model inputs and model input uncertainties 

associated with loadings, initial conditions, boundary conditions, etc. For example, load and material variabilities 

can be quantified by the symmetrical placement of sensors within an experiment, and test-to-test variations can be 

quantified by performing multiple validation experiments. 

 

The Pretest Calculations link between the experimental and computational branches in Figure 2 also reflects the 

important interaction between the modeler and the experimenter that must occur to ensure that the measured data is 

needed, relevant, and accurate. Once the Validation Experiment and Pretest Calculations are completed, however, 

the modeler and experimenter should work independently until reaching the point of comparing outcomes from the 

experiment and the simulation. 
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Experimentation involves the collection of raw data from the various sensors used in the physical experiment 

(strain and pressure gauges, high speed photography, etc.) to produce Experimental Data such as strain 

measurements, time histories of responses, videos, photographs, etc. If necessary, experimental data can be 

transformed into experimental “features” to be more directly useful for comparison to simulation results. To support 

the quantification of experimental uncertainties, repeat experiments are generally necessary to quantify the lack of 

repeatability due to systematic error (bias) and uncontrollable variability. 

 

Uncertainty Quantification is then performed to quantify the effect of measurement error, design tolerances, as-built 

uncertainties, fabrication errors, and other uncertainties on the Experimental Outcomes. Experimental Outcomes 

typically take the form of experimental data with error bounds as a function of time or load. 

 

Uncertainty Quantification is shown on both left and right branches of Figure 2 to underscore its important role in 

quantifying the uncertainty and confidence in both the experimental and simulation outcomes. The Quantitative 

Comparison of Experimental and Simulation Outcomes may take the form of a statistical statement of the selected 

validation metrics. For example, if the validation metric were the difference between the simulation and 

experimental outcome (or simply “error”), the Quantitative Comparison would quantify the expected accuracy of 

the model, e.g., “We are 95% confident that the error is between 5% and 10%.” Validation metrics are discussed in 

more detail in a subsequent section. 

 

The Model Validation assessment determines the degree to which a model is an accurate representation of the real 

world from the perspective of the intended uses of the model. This information is used to decide whether or not the 

model has resulted in Acceptable Agreement with the experiment. The question of whether or not the model is 

adequate for its intended use is broader than implied in the Acceptable Agreement decision block shown in Figure 2. 

The Acceptable Agreement decision focuses only on the level of agreement between Experimental and Simulation 

Outcomes, the criteria for which were specified as part of the Conceptual Model. 

 

If the agreement between the experimental and simulation outcomes is unacceptable, the model and/or the 

experiment can be revised. Model revision is the process of changing the basic assumptions, structure, parameter 

estimates, boundary values, or initial conditions of a model to improve agreement with experimental outcomes. 

Experiment revision is the process of changing experimental test design, procedures, or measurements to improve 

agreement with simulation outcomes. Whether the model or the experiment (or both) are revised depends upon the 

judgment of the model developer and experimenter. 

 

In the following sections, we describe in more detail the various simulation, experimental, and assessment activities 

illustrated in Figure 2. 
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3.0 VERIFICATION ASSESSMENT 

Verification is the process of determining that a model implementation accurately represents the developer’s 

conceptual description of the model and the solution to the model. [1] In performing verification, it is useful to 

divide the verification activity into distinct parts (Table 1), recognizing the different function of software developers 

producing a code that is error free, robust, and reliable, and model developers who use the code to obtain solutions 

to engineering problems with sufficient accuracy. [11] 

Table 1: Verification assessment classifications and descriptions. 

Classification Focus Responsibility Methods 

Software 
Quality 
Assurance 

Reliability and 
robustness of the 
software 

Code developer & 
Model developer 

Configuration management, 
static & dynamic testing, etc. 

Code 
Verification Numerical 

Algorithm 
Verification 

Correctness of the 
numerical algorithms in 
the code 

Model developer 
Analytical solutions, 
benchmark problems, 
manufactured solutions, etc. 

Calculation 
Verification 

Numerical 
Error 
Estimation 

Estimation of the 
numerical accuracy of a 
given solution to the 
governing equations 

Model developer Grid convergence, 
time convergence, etc 

3.1 Code Verification 

The purpose of code verification is to confirm that the software is working as intended. The main focus of this 

activity is to identify and eliminate programming and implementation errors within the software (software quality 

assurance) and to verify the correctness of the numerical algorithms that are implemented in the code (numerical 

algorithm verification); therefore, code verification is the responsibility of both the code developer and the model 

developer. 

 

Code verification is partially accomplished using software quality assurance (SQA) procedures. SQA performed by 

the code developer is used to ensure that the code is reliable (implemented correctly) and produces repeatable results 

on specified computer hardware, operating systems, and compilers. SQA is typically accomplished using 

configuration management and static and dynamic software quality testing. SQA procedures are needed during the 

software development process, and during production computing. 
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Model developers should also perform SQA by running all relevant verification problems provided with the 

software. This approach not only provides evidence that the model developer can correctly operate the code but also 

helps to ensure that executing the code on the model developer’s computer system reproduces the results obtained 

by the code developers executing the code on their computer systems. This recommended practice has also been 

called “confirmation.” [9] 

 

Code verification also encompasses checking the implementation of numerical algorithms used in the code, a 

process referred to as numerical algorithm verification. In this activity, test problems with known (analytical) or 

highly accurate (benchmark) solutions are devised and compared to solutions obtained with the code. In the absence 

of highly accurate solutions, a technique termed the “method of manufactured solutions” (MMS) can be used to 

create analytical solutions that are highly sensitive to programming and algorithmic errors. [10] 

 

In general, uncertainty quantification is performed using software, so code verification is also required for the 

uncertainty analysis algorithms. This process entails comparing computed solutions to known or highly accurate 

nondeterministic solutions. Benchmark solutions can be obtained, for example, by using Monte Carlo simulation 

with a large number of samples. These solutions can be saved and reused as established probabilistic benchmark 

solutions. 

 

Since it cannot be proven that a code is error free, the accumulation of well-thought-out test cases provides evidence 

that the code is sufficiently error-free and accurate. These test problems must be documented, accessible, repeatable, 

and capable of being referenced. Documentation must also record the computer hardware used, the operating 

system, compiler versions, etc. 

3.2 Calculation Verification 

The purpose of calculation verification is to quantify the error of a numerical simulation by demonstration of 

convergence for the particular model under consideration (or a closely related one), and, if possible, to provide an 

estimation of the numerical errors induced by the use of the model. The name “numerical error estimation” has 

recently been proposed to describe the calculation verification activity better. [11] The types of errors being 

identified and removed by calculation verification include insufficient spatial or temporal discretization, insufficient 

convergence tolerance, incorrect input options, and finite precision arithmetic. Barring input errors, insufficient grid 

refinement is typically the largest contributor to error in calculation verification assessment. 

 



 12  

 

It is relatively popular to perform code-to-code comparisons as a means of calculation verification—for example, 

comparing results obtained from DYNA3D2 to ABAQUS3. Code-to-code comparisons are suspect, however, 

because it is difficult if not impossible to discern which, if either, code is correct. If the same solution is obtained 

with both codes, there still is no proof that the computed solutions are correct, because they could incorporate 

identical errors, e.g., a typesetting error in a journal paper describing formulation of a finite element. In the absence 

of sufficient verification evidence from other sources, however, code-to-code comparisons do provide circumstantial 

evidence. They may be the only practical alternative in some cases. Only in such cases are code-to-code 

comparisons recommended. 

 

In general, uncertainty quantification requires a numerical solution; therefore, calculation verification is required to 

quantify the numerical accuracy of the uncertainty analysis method being used. Approximate uncertainty analysis 

methods, which are typically required for computationally intensive models, can introduce errors into the numerical 

solution and must be verified. Monte Carlo simulation can be used to verify approximate uncertainty analysis 

methods. 

 

In a probabilistic analysis, which is the most widely used and accepted uncertainty analysis method, the various 

forms of error include deterministic model approximations, uncertainty characterization, method(s) of probability 

integration, and the numerical implementation of those method(s). [12] Deterministic model approximations 

(response surface, metamodel, etc.) are widely used to speed up the analysis when the original deterministic model 

is computationally expensive to evaluate. The form of the uncertainty characterization can produce error—for 

example, using a continuous probability distribution function to represent a small sample of data. As part of the 

uncertainty analysis solution, numerical algorithms are employed that result in error due to solution and convergence 

tolerances. Finally, the probability integration can introduce error due to limited sampling or first-order 

approximations. All errors associated with the uncertainty-analysis method must be quantified during the 

calculation-verification activity. 

 

Since numerical errors cannot be completely removed, the calculation-verification test problems aim to quantify the 

numerical accuracy of the model. These test problems must be documented, accessible, repeatable, and capable of 

being referenced. Also required in the documentation is a record of the computer hardware used, the operating 

system, compiler versions, etc. 

 

                                                           
2 Lawrence Livermore National Laboratory 
3 ABAQUS, Inc. 
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4.0 VALIDATION ASSESSMENT 

Validation assessment is the process of determining the degree to which a model is an accurate representation of the 

real world from the perspective of the intended uses of the model. [1] The goal of validation is to quantify 

confidence in the predictive capability of the model by comparison with experimental data. 

 

The approach to validation assessment is to measure the agreement between model predictions and experimental 

data from appropriately designed and conducted experiments. Agreement is measured, for example, by quantifying 

the difference (error) between the experimental data and the model output. Uncertainty in both model output and 

experimental data will confound measurement of the error. Consequently, agreement is expressed as a statistical 

statement—for example, as the expected error with associated confidence limits. 

 

The definition of “validation assessment” given above requires further clarification. The phrase “process of 

determining” emphasizes that validation assessment is an on-going activity that concludes only when acceptable 

agreement between experiment and simulation is achieved. The phrase “degree to which” emphasizes that neither 

the simulation nor the experimental outcomes are known with certainty, and consequently, will be expressed as an 

uncertainty, e.g., as an expected value with associated confidence limits. Finally, the phrase “intended uses of the 

model” emphasizes that the validity of a model is defined over the domain of model form, inputs, parameters, and 

responses. This fact effectively limits use of the model to the particular application for which it was validated; use 

for any other purpose (than making a prediction) would require the validation assessment to be performed again. 

 

The relationship between model validation and model prediction is illustrated in Figure 3 for two model variables, 

X1 and X2. Model calculations and validation experiments are performed and validated at various values of X1 and 

X2. The uncertainties in the model output and experimental outcomes produce the uncertainty contours shown. 

(Darker shades denote less uncertainty.) The uncertainty in a prediction made with the model, shown in the 

unshaded contours, will be reflected in the strength of the inference from the validation database. In general, higher 

confidence will be associated with predictions made at points closer to validation points. 
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Figure 3: Validation and application domain for two design variables. 

It is important to emphasize that adjusting the model–either the model parameters or the basic equations–to improve 

agreement between the model output and experimental measurements does not constitute validation. In some 

instances, calibration (or model updating) is a useful activity; however it is part of the model-building process and 

not the validation-assessment process. Moreover, it is often tempting to adjust the parameters of highly sophisticated 

computer models to improve agreement with experimental results. This temptation is avoided if the model and 

experimental results are kept separate until the comparisons are made. 

4.1 Validation Hierarchy 

Ultimately, the reality of interest shown in Figure 2 is a complete system. However, most systems comprise 

multiple, complicated subsystems and components, each of which must be modeled and validated. The current state 

of practice often attempts to validate system models directly from test data taken on the entire system. This approach 

can be problematic if there are a large number of components or if subsystem models contain complex connections 

or interfaces, energy dissipation mechanisms, or highly nonlinear behavior, for example. If there is poor agreement 

between the prediction and the experiment, it can be difficult if not impossible to isolate which subsystem is 

responsible for the discrepancy. Even if good agreement between prediction and experiment is observed, it is still 

possible that the model quality could be poor because of error cancellation among the subsystem models. Therefore, 

a strategy must be developed to conduct a sequence of experiments that builds confidence in the model's ability to 

produce reliable simulations of system performance. 
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Based on this understanding of experimental complexity, it is possible to construct a hierarchy of validation 

assessments. Figure 4 shows a schematic of a generic hierarchy. The top tier represents the complete system. 

For example, the DynEx vessel system will include the containment vessel (CV), radiographic hardware and 

fragment shielding, CV support-box stand, safety vessel (SV), all supporting structures, vessel penetrations, 

windows, and bolted assemblies, as well as the explosive and test article. Three more tiers are shown: subsystems, 

components, and unit problems. These tiers illustrate the decomposition of a complex system into a series of 

fundamental physical problems. The number of tiers needed to decompose a complete problem may be more or less 

than that shown. 

 

The system and subsystem tiers shown in Figure 4 will typically represent hardware assemblies. Component and 

unit problems are typically physics-based and represent important problem characteristics that the model must be 

able to simulate accurately. Examples of unit problems include material coupon tests, interface or joint tests, and 

load environment tests. Component problems typically involve simplifications involving idealized geometry, 

simplified boundary conditions, simplified applied loads, etc. 

 

In a hierarchical approach, the system, subsystems, components, and unit problems all serve as the reality of interest 

shown in Figure 1 and Figure 2. The data collected at each level of the hierarchy comprise measurements that 

challenge the model's ability to predict quantities and phenomenology important for the accurate simulation of the 

system performance. To reduce the chance for cancellation of error in a system prediction, unit problems should be 

validated before component problems and so on. In other words, the hierarchy is traversed from the bottom up, and 

typically there are wide variations in the predictive capability of the various submodels in the hierarchy. 

 

Complete System

Subsystems

Components

Unit Problems

 

Figure 4: Validation hierarchy. 
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Schedule or budget constraints may prohibit experiments needed to validate a model for every unit problem, 

component, and subsystem defined in the validation hierarchy. In this situation, it can be useful to perform a 

sensitivity analysis of the full-system model and identify the important problem characteristics that require more 

careful definition and perhaps higher fidelity. This approach focuses the validation effort on only the physics that 

contributes significantly to the response of interest. Another approach is to rely on expert judgment to estimate 

uncertainties associated with elements of the hierarchy for which there are no data and to propagate these 

uncertainties to the top level. The danger of these approaches lies in the use of the as yet unvalidated model or 

incomplete information to determine, perhaps incorrectly, the important problem characteristics. 

 

Careful construction of a validation hierarchy is of paramount importance because it defines the problem 

characteristics that the model must be able to simulate, the coupling and interactions between unit problems, and the 

complete system (denoted by the arrows in Figure 4), and, arguably most importantly, the validation experiments 

that must be performed to validate the unit, components, and subsystem models. As an example, the DynEx vessel 

must be designed to withstand the penetration and possible perforation of the vessel wall due to fragment impact. 

This fact suggests several unit problems, such as the high-strain-rate inelastic behavior of the vessel wall, the 

aluminum and beryllium material, and the structural response of the vessel wall impacted by fragments. Each of 

these unit problems would serve as the “reality of interest” in Figure 2, and consequently, each model is constructed 

and validated before assembling into components and repeating the process. 

4.2 Validation Metrics 

Complex model simulations generate an enormous amount of information from which to choose. The selection of 

the simulation outcome should first be driven by application requirements. For example, if a design requirement is 

that the peak strain at specified location should not exceed some value, then the model validation should focus on 

comparison of measured and computed strains at that location. 

 

Features of experimental data and model outputs must be carefully selected. A feature may be simple, such as the 

maximum response for all times at a specific location in the computational domain, or more complex, such as the 

complete response history at a specific location, modal frequencies, mode shapes, load-deflection curve slopes and 

inflection points, peak amplitudes, signal decay rates, temporal moments, shock response spectra, etc. In some cases, 

a feature can be used directly as a validation metric; in other cases, the feature must be processed further into a form 

more suitable for comparison with experimental data. 
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A validation metric is the basis for comparing features from experimental data with model predictions. [13] 

Validation metrics are established during the requirements phase of the conceptual model development and 

incorporate numerical and experimental uncertainty. If the error, e , between experimental data, y , and model 

prediction, *y , is given by *yye −= , a simple metric could be the expected value of the error, ( )eE , or the 

variance of the error, ( )eV . Other metrics could include, for example: ( )0>eP , where ( )⋅P  is the probability; the 

95th percentiles on the probability distribution of e ; or a hypothesis test such as ( )0>eE , where the validation 

metric is a pass/fail decision of whether or not the model is contradicted by the data. 
 

Validation metrics must be established during the validation requirement phase of the conceptual model 

development and should include estimates of the numerical and experimental error. In selecting the validation 

metric, the primary consideration should be what the model must predict in conjunction with what types of data 

could be available from the experiment. Additionally, the metrics should provide a measure of agreement that 

includes uncertainty requirements. 

4.3 Validation Experiments 

Traditional experiments are performed to improve fundamental understanding of physical behavior, improve 

mathematical models, estimate values of model parameters, and assess component or system performance. Data 

from traditional experiments are generally inadequate for purposes of model validation because of lack of control or 

documentation of some experimental parameters or inadequate measurement of specimen response. Generally, data 

from the archive literature are from traditional experiments and do not meet the requirement of validation testing. 

Therefore, for model V&V, it will usually be necessary to perform experiments dedicated to model validation. 

 

In contrast to traditional experiments, validation experiments are performed to generate high-quality data for the 

purpose of assessing the accuracy of a model prediction. A validation test is a physical realization of an initial-

boundary value problem. To qualify as a validation test, the specimen geometry, initial conditions, boundary 

conditions, and all other model input parameters must be prescribed accurately. The response of the test specimen to 

the loading must be measured with high, quantified accuracy. Data collected during the test should include the 

applied loads as well as initial conditions and boundary conditions that might change throughout the test. In 

addition, all prescribed input, test conditions, and measurements must be fully documented. Ideally, this approach 

provides as many constraints as possible, requiring few, if any, assumptions on the part of the modeler. 

 

The experimental data comprise the standard against which the model outputs are compared. Therefore, it is 

essential to determine the accuracy and precision of the data from experiments. Uncertainty in the measured 

quantities should be estimated so that the predictions from the model can be credibly assessed. Uncertainty and error 

in experimental data include variability in test fixtures, installations, environmental conditions, and measurements. 

Sources of nondeterminism in as-built systems and structures include design tolerances, residual stresses imposed 

during construction, and different methods of construction. 
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In experimental work, errors are usually classified as being either random error (precision) or systematic error (bias). 

An error is classified as random if it contributes to the scatter of the data in repeat experiments at the same facility. 

Random errors are inherent to the experiment, produce nondeterministic effects, and cannot be reduced with 

additional testing. Systematic errors produce reproducible or deterministic bias that can be reduced, although it is 

difficult in most situations. Sources of systematic error include transducer calibration error, data acquisition error, 

data reduction error, and test technique error.[14] 

 

While not strictly necessary, agreement between experiment and simulation for other variables or at other locations 

in the model adds qualitatively to the overall confidence placed in the model. Therefore, validation tests should 

produce a variety of data so that many aspects of the model can be assessed. This assessment is important because, 

although some quantities may be of secondary importance, accurate predictions of these quantities provide evidence 

that the model accurately predicts the primary response for the right reason. This evidence qualitatively builds 

confidence that the model can be used to make accurate predictions for problem specifications that are different 

from those included in model development and validation. 

 

Coordination with Modelers 

Modelers should have input to the design of the validation tests. What is simple for an experimenter to measure may 

not be simple for a modeler to predict, and vice versa. There must be a shared understanding of what responses are 

difficult to measure or predict. Additionally, the modelers must be certain that all inputs (especially for constitutive 

models), boundary conditions, and imposed loads are being measured. The need for collaboration should not be 

overlooked. 

 

Modelers should perform a parametric study with the verified model to determine model sensitivities that must be 

investigated experimentally. Additionally, pretest analyses should be conducted to uncover potential problems with 

the experiment design. 

 

Finally, it is highly advisable that the model developer not know the test results before the model prediction is 

complete. Exceptions, of course, are the measured load and boundary conditions, if applicable. Because many 

problems show significant sensitivity to physical and numerical parameters, it is often tempting to adjust the 

prediction of highly sophisticated computer models to match measurements. This course of action must be avoided, 

however, because it does not constitute validation. 

 

Measurement Requirements 

Measurements must have known accuracy and precision, which must be established through calibration of the 

transducers and documentation of inaccuracies related to nonlinearity, repeatability, and hysteresis. Uncertainty in 

measurement accuracy is rarely quoted. However, it is necessary to estimate the uncertainty in the measurements so 

that model predictions can be judged appropriately. 
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Many sources can affect a gauge output. Transducers should be calibrated in an environment similar to that of the 

test, e.g., at elevated temperature. If a transducer is sensitive to the environment, and the environment changes 

significantly during the test, the transducer sensitivity to the environment must be established so that the resulting 

data can be corrected to account for the sensitivity to environment. The compliance or inertia of any test fixtures 

must be determined and accounted for if they contribute to the measurement of displacement or force, respectively. 

Additional tests dedicated to demonstrating the accuracy of the measurements have been shown to be very helpful. 

 

Redundant measurements are needed to establish the variability (scatter) in the test results. This establishment of 

variability can be accomplished, for example, by repeating tests on different specimens. If the cost of testing is high 

or the availability of test specimens is limited, redundant measurements obtained by placing similar transducers at 

symmetrical locations (if the test has adequate symmetry) can also assess scatter. The data from these transducers 

can also be used to determine if the desired symmetry was indeed obtained. Consistency of the data is an important 

attribute of the test that increases confidence in the test data. Data consistency can be established by independent or 

corroborative measurements, e.g., stress and velocity, as well as by measurements of point quantities made in 

families so that fields can be estimated. 

 

There are two basic approaches to experimental error estimation: 1) estimation and characterization of all the 

elemental uncertainties that combine to produce the total experimental error, and 2) the use of replicate testing to 

provide direct statistical estimates of the total experimental uncertainty. The former approach is attractive in that it 

provides a means of error source identification but requires data from independent sources or a large amount of 

supplementary testing. In practice, some combination of the two approaches can be used. For this reason, 

well-thought-out validation test programs usually provide for an appropriate amount of experimental replication. 

4.4 Uncertainty Quantification 

It is widely understood and accepted that uncertainties, whether reducible (random) or irreducible (systematic), arise 

because of the inherent randomness in physical systems, modeling idealizations, experimental variability, 

measurement inaccuracy, etc., and cannot be ignored. This fact complicates the already difficult process of model 

validation by creating an unsure target—a situation in which neither the simulated nor the observed behavior of the 

system is known with certainty. 

 

Nondeterminism refers to the existence of errors and uncertainties in the outputs of computational simulations 

because of inherent and/or subjective uncertainties in the model inputs or model form. Likewise, the measurements 

that are made to validate these simulation outcomes also contain errors and uncertainties. In fact, it is important to 

note that while the experimental outcome is used as the reference, the V&V process does not presume the 

experiment to be more accurate than the simulation. Instead, the goal is to quantify the uncertainties in both 

experimental and simulation results such that the model requirements can be assessed (validation) and the predictive 

accuracy of the model quantified. 
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Uncertainty and error can be categorized as error, irreducible uncertainty, and reducible uncertainty. Errors create a 

reproducible (i.e. deterministic) bias in the prediction and can theoretically be reduced or eliminated. Errors can be 

acknowledged (detected) or unacknowledged (undetected). Examples include inaccurate model form, 

implementation errors in the computational code, nonconverged computational models, etc. 

 

“Irreducible uncertainty” (i.e., variability, inherent uncertainty, aleatory uncertainty) refers to the inherent variations 

in the system that is being modeled. This type of uncertainty always exists in physical systems and is an inherent 

property of the system. Examples include variations in system geometric or material properties, loading 

environment, assembly procedures, etc. 

 

“Reducible uncertainty” (i.e., epistemic uncertainty) refers to deficiencies that result from a lack of complete 

information about the system being modeled. An example of reducible uncertainty is the statistical distribution of a 

geometric property of a population of parts. Measurements on a small number of the parts will allow estimation of a 

mean and standard deviation for this distribution. However, unless this sample size is sufficiently large (i.e., 

infinite), there will be uncertainty about the “true” values of these statistics, and, indeed, uncertainty regarding the 

“true” shape of the distribution. Obtaining more information (in this case, more sample parts to measure) will allow 

reduction of this uncertainty and a better estimate of the true distribution. 

 

Nondeterminism is generally modeled through the theory of probability. The two dominant approaches to 

probability are the frequentist approach in which probability is defined as the number of occurrences of an event, 

and the Bayesian approach, in which probability is defined as the subjective opinion of the analyst about an event. 

Other mathematical theories have also been developed for representing uncertainty, such as fuzzy sets, evidence 

(Dempster-Shafer) theory, the theory of random sets, and the theory of information gap; however, their application 

to computationally-intensive problems is less well-developed than probabilistic methods. 

 

Much of the nondeterministic information that exists in a numerical model can be identified and treated in order to 

quantify its effects and in some cases even reduce these effects. The first class of information is the uncertainty 

associated with the model input parameters such as material behavior, geometry, load environment, initial 

conditions, or boundary conditions. The variability (irreducible uncertainty) of these parameters can be estimated 

using repeated experiments to establish a statistically significant sample. In lieu of sufficient data, expert opinion 

may be elicited to estimate distribution parameters or bounds; however, the imprecise nature of expert opinion must 

be reflected as additional uncertainty in the simulation outcomes. 

 

When the variability in the model input parameters has been established, this variability can be propagated through 

the simulation to establish an expected variability on the simulation output quantities. Sampling-based propagation 

methods (Monte Carlo, Latin Hypercube, etc.) are straightforward, albeit inefficient, techniques for propagating 

variabilities. These methods draw samples from the input parameter populations, evaluate the deterministic model 
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using these samples, and then build a distribution of the appropriate response quantities. Sampling methods can be 

made more efficient by the use of local response surface approximations (e.g., metamodel, reduced-order model, 

etc.) of the model being studied. However, the error involved in the use of a response surface must also be 

estimated. Sensitivity-based methods that are more efficient than sampling-based methods may also be used to 

propagate input uncertainties to uncertainties on the response quantities. Well known sensitivity-based methods 

include the First Order Reliability Methods (FORM), Advanced Mean Value (AMV), and Adaptive Importance 

Sampling (AIS). 

 

When little or no direct evidence is available for uncertainty quantification of the models and experiments, an 

alternative uncertainty characterization based on a generic class of model-test pairs may be useful. This approach 

estimates uncertainty based on the statistics of the differences between models and experiments that are generically 

similar to the problem at hand. However, the interpretation of such an analysis can be difficult and depends on the 

definition of the generic class and the constituents of that class. 

4.5 Validation Requirements and Acceptable Agreement 

The final step in the validation process is to compare values of the metrics chosen to measure the agreement between 

model outputs with the experimental data and to make an assessment of model accuracy. The determination of 

whether or not the validated system-level model is adequate for its intended use is a programmatic decision and 

involves both technical and nontechnical requirements such as schedule, availability, financial resources, public 

perception, etc. Stakeholders who are not part of the validation team will typically determine these nontechnical 

requirements. Therefore, the interpretation of adequacy is limited here to include only the acceptable agreement 

between experimental and simulation outcomes. 

 

In Figure 4, the system-level model accuracy goal is used to establish accuracy requirements for each subordinate 

model in the validation hierarchy. These requirements should be established such that the unit, component, and 

subsystem models are developed at least to the degree of fidelity required to meet the system-model accuracy goal. 

A sensitivity analysis of the complete system can be used to identify the importance/contribution of each model, 

which can then be used to establish commensurate accuracy requirements. 

 

The required accuracy between simulation and experimental outcomes should be established before the comparison 

is made. It is reasonable to expect that the accuracy objective for unit problems will be more stringent than for the 

complete system because of the simpler nature of unit problems. For example, a 2% accuracy expectation might be 

established for a unit model that predicts the axial deformation of a bolt in tension, whereas the accuracy expectation 

might be 5% or more for a model that predicts the dynamic response of the bolt under combined loadings. For 

example, an accuracy requirement might be expressed in a statement such as, “A model is desired that is accurate to 

within 10% with 95% confidence.” 
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5.0 MODEL AND EXPERIMENT REVISION 

If the agreement between experimental and simulation outcomes is unacceptable, the model and/or experiment may 

need to undergo revisions. These revisions should reflect knowledge about the mechanics of the system that was 

gained during the process of comparing the experimental and simulation outcomes. The revisions should also reflect 

further knowledge that has been obtained regarding the behavior of the constituent materials, initial conditions, or 

boundary conditions. The revisions may reflect new knowledge about the characteristics of the applied loads that 

will affect the output of the simulation model. In a general sense, revisions to the model can be divided into two 

broad classes: revisions to the parameters of the mathematical/computational model, and revisions to the form of the 

conceptual model itself. 

 

The ad hoc adjustment of model parameters to bring the model into better agreement with experimental outcomes is 

strongly discouraged. In some references, this practice has been termed “model calibration.” Model calibration 

should not be confused with a “calibration experiment,” which is an experiment performed to determine values for 

constitutive model parameters. While model calibration may produce better agreement between the experiment and 

the model, the predictive capability of the model will be compromised by the introduction of additional empirical 

calibration factors (because the the model may produce the right answer for the wrong reason). 

 

When model revision is required to improve the agreement between simulation and experiment, two techniques can 

be used to estimate revised values of the parameters in the model: 1) parametric model calibration, and 

2) independent measurements of the parameter values. 

 

Revision by parametric model calibration is extensively used in the field of linear structural dynamics to bring 

computational predictions into better agreement with measured response quantities. Terms such as “model 

updating,” “parameter calibration,” and “parameter estimation” are commonly used to describe such a technique. 

While the revision of model parameters in this way can be a scientifically legitimate method of improving the 

predictive accuracy of a structural dynamics model, care must be exercised to ensure that it is not done in an ad hoc 

manner. In the performance of parameter calibration, optimization techniques (such as least squares fitting) are 

commonly employed to estimate the values of model parameters such that the value of an objective function is 

minimized. Finally, a model that has been calibrated must be revalidated. 

 

Parameter calibration is commonly used to “tune” the performance of a linear vibration model so that the measured 

modal quantities (e.g., modal frequencies and mode shapes) of the simulation are brought into agreement with the 

corresponding parameters obtained in measurements. The most common sources of model difficulties in structural 

dynamics—compliance in joints, energy loss/damping, unmeasured excitations, uncertain initial and boundary 

conditions—can thus be represented as simple mechanical models and the submodel parameters calibrated so that 

the global response is in agreement. 
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The second approach for parametric model revision is to isolate the parameters of interest and make an independent 

measurement of the responses. Once additional information is obtained on these parameters, the model may be 

updated with new parameter values. 

 

The second class of model revisions that can be made involves changes to the form of the conceptual model, which 

may or may not require changes in the mathematical and computational model. Typically, this type of change will 

be a result of observations made during the experimental phase and/or validation assessment phase in which some 

characteristics in the response of the structure are not consistent with the corresponding characteristics of the 

simulation model output and the differences are not attributable to reasonable inaccuracies in the model parameters. 

 

There are many common types of deficiencies in model form that can be responsible for inaccurate simulation 

results: two-dimensional models that cannot represent three-dimensional response effects; the wrong model form for 

elastic or plastic response of a material; assumptions about contact being tied when in reality a gap develops 

between two parts; assumptions that two parts do not move relative to one another when in reality they do and 

significant friction forces are developed; rigid boundary conditions that turn out to have significant compliance, etc. 

It is important to look for possible violation of the assumptions of the model form when reconciling the measured 

data with the results of the computational simulation. Should the equations or model parameters change, the process 

of model verification and validation must be performed again. Moreover, if parameters were changed using data 

from some or all of the validation experiments, then new experiments must be performed to provide evidence for the 

validation. 
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6.0 SUMMARY AND CONCLUSIONS 

This report has presented the concepts of Model Verification and Validation (V&V). The scope of the report 

includes the philosophy, general concepts, and processes for conducting a successful V&V program. While the 

LANL DynEx Vessel Program motivated the development of this report, the concepts presented are general and 

applicable to any program requiring the use of validated numerical models. In a subsequent report, specific V&V 

procedures required to implement these concepts and to make recommendations for the DynEx vessel design and 

analysis will be developed. 

 

There are many open issues in the definition and practice of V&V. From a practical standpoint, the costs associated 

with conducting a high quality V&V program could be formidable. Therefore, the long-term benefits of using a 

validated model to supplement physical testing must be balanced against the costs associated with model 

development and model V&V. The resource requirements associated with model V&V necessitate a graded 

approach to the application of V&V requirements. 

 

The need to reduce time and costs associated with large-scale physical testing drive the reliance on modeling and 

simulation upward in the field of computational mechanics. This fact, in turn, motivates the continued development 

of methodology and tools for performing model V&V. Several areas in which further research and development are 

needed have been identified: 

 

• peer-reviewed and accepted procedures for developing a validated model; 

• methods and tools for performing uncertainty quantification considering both inherent and epistemic 

uncertainty; 

• methodology for establishing a validation hierarchy and associated model-validation requirements; 

• Validation metrics, performance measures, and computational features to support validation 

comparisons; and 

• ways of computing error and confidence via statistical analysis of computational and simulation 

outcomes, and methods for identifying optimal model revision strategies via sensitivity analysis. 
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