PHYSICAL, CHEMICAL AND STRUCTURAL EVOLUTIION OF ZEOLITE-CONTAINING WASTE FORMS PRODUCED FROM METAKAOLINITE AND CALCINED SODUIM BEARING WASTE (HLW AND/OR LLW)

PDF Version Also Available for Download.

Description

Zeolites are extremely versatile. They can adsorb liquids and gases and serve as cation exchange media. They occur in nature as well cemented deposits. The Romans used blocks of zeolitized tuff as a building material. Using zeolites for the management of radioactive waste is not new, but a process by which the zeolites can be made to act as a cementing agent is. Zeolitic materials are relatively easy to synthesize from a wide range of both natural and man-made precursors. The process under study is derived from a well known method in which metakaolin (thermally dehydroxylated kaolin a mixture of ... continued below

Physical Description

vp.

Creation Information

Grutzeck, Michael W. June 10, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Zeolites are extremely versatile. They can adsorb liquids and gases and serve as cation exchange media. They occur in nature as well cemented deposits. The Romans used blocks of zeolitized tuff as a building material. Using zeolites for the management of radioactive waste is not new, but a process by which the zeolites can be made to act as a cementing agent is. Zeolitic materials are relatively easy to synthesize from a wide range of both natural and man-made precursors. The process under study is derived from a well known method in which metakaolin (thermally dehydroxylated kaolin a mixture of kaolinite and smaller amounts of quartz and mica that has been heated to {approx}700 C) is mixed with sodium hydroxide (NaOH) and water and reacted in slurry form (for a day or two) at mildly elevated temperatures. The zeolites form as finely divided powders containing micrometer ({micro}m) sized crystals. However, if the process is changed slightly and just enough concentrated sodium hydroxide solution is added to the metakaolinite to make a thick paste and then the paste is cured under mild hydrothermal conditions (60-200 C), the mixture forms a concrete-like ceramic material made up of distinct crystalline tectosilicate minerals (zeolites and feldspathoids) imbedded in an X-ray amorphous hydrated sodium aluminosilicate matrix. Due to its vitreous character we have chosen to call this composite a ''hydroceramic''. Similar to zeolite powders, a hydroceramic is able to sequester cations in both lattice positions and within the channels and voids present in its tectosilicate framework structure. It can also accommodate a wide range of salt molecules (e.g., sodium nitrate) within these same openings thus rendering them insoluble. Due to its fine crystallite size and cementing character, the matrix develops significant physical strength. The obvious similarities between a hydroceramic waste form and a waste form based on solidified Portland cement grout are only superficial because their chemistries are entirely different. In addition to being vastly superior to conventional Portland cement grouts with respect to salt retention, standard radwaste leach protocols (PCT, TCLP, etc.) have shown that hydroceramics also do a better job of immobilizing the RCRA-toxic and radioactive components of ''sodium bearing wastes'' (SBWs).

Physical Description

vp.

Source

  • Other Information: PBD: 10 Jun 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-81963--204
  • Grant Number: FG07-98ER45728
  • DOI: 10.2172/839097 | External Link
  • Office of Scientific & Technical Information Report Number: 839097
  • Archival Resource Key: ark:/67531/metadc785046

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 10, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • June 10, 2016, 6:32 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Grutzeck, Michael W. PHYSICAL, CHEMICAL AND STRUCTURAL EVOLUTIION OF ZEOLITE-CONTAINING WASTE FORMS PRODUCED FROM METAKAOLINITE AND CALCINED SODUIM BEARING WASTE (HLW AND/OR LLW), report, June 10, 2004; United States. (digital.library.unt.edu/ark:/67531/metadc785046/: accessed October 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.