COMMERCIAL APPLICATION OF PLASMA MASS SEPARATION IN THE ARCHIMEDES FILTER PLANT

PDF Version Also Available for Download.

Description

This paper describes the commercial application of an innovative plasma mass separator called the Archimedes Filter to a pre-treatment plant that can be integrated into the U.S. Department of Energy (DOE) Hanford and Savannah River Sites to significantly enhance the treatment of radioactive high-level waste. The output of the Archimedes Filter is completely compatible with existing waste immobilization processes such as vitrification and requires no new waste form to be developed. A full-geometric-scale Demonstration Filter Unit (DEMO) has been constructed and is undergoing initial testing at the Archimedes Technology Group Development Facilities in San Diego. Some of the technology and ... continued below

Physical Description

12 pages

Creation Information

Ahlfeld, C.E.; Gilleland, J.G. & Wagoner, J.D. February 27, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper describes the commercial application of an innovative plasma mass separator called the Archimedes Filter to a pre-treatment plant that can be integrated into the U.S. Department of Energy (DOE) Hanford and Savannah River Sites to significantly enhance the treatment of radioactive high-level waste. The output of the Archimedes Filter is completely compatible with existing waste immobilization processes such as vitrification and requires no new waste form to be developed. A full-geometric-scale Demonstration Filter Unit (DEMO) has been constructed and is undergoing initial testing at the Archimedes Technology Group Development Facilities in San Diego. Some of the technology and engineering development is being performed by other organizations in collaboration with Archimedes. The Commissariat a l'Energie Atomique (CEA) is developing the plasma calcination technology and all of the associated systems for AFP feed preparation. Two Russian institutes are involved in the development of the ICP torch and injector system. The Remote System Group (UT-Battelle) at ORNL is developing the remote maintenance system for the filter units. Conceptual design of the Archimedes Filter Plant (AFP) is being developed concurrently with the DEMO testing program. The AFP mission is to significantly reduce the cost and accelerate the rate of vitrification of high-level waste by separating low activity waste from the sludge removed from underground storage tanks. Mass separation is accomplished by vaporizing the sludge feed and injecting it into a partially ionized, neutral plasma. In a single pass, heavy ions are deposited near the center of the filter and light mass ions are transported by the plasma to the ends of the cylindrically-shaped vacuum vessel. Responding to the DOE programs for cost reduction and cleanup acceleration, the AFP Project is planned on an expeditious schedule that executes all phases of the project with private sector funding. The initial AFP implementation is targeted for the Waste Treatment Plant (WTP) at the Hanford Site. Hot commissioning is scheduled for late 2007 with design throughput and availability achieved by end of 2008. It is anticipated that AFP revenues will be based on a shared cost savings model, thus providing first revenues by late 2007. Preliminary safety studies have shown that AFP process hazards are similar to or less hazardous than those in a radio-chemical pre-treatment plant for high-level waste. Conservative criticality evaluations indicate very large margins from criticality. Development of a Preliminary Safety Analysis Report will begin in mid 2003 to support licensing activities. A detailed permitting plan has been developed which, when combined with other activities, support a start of construction in 2005.

Physical Description

12 pages

Source

  • Waste Management 2003 Symposium, Tucson, AZ (US), 02/23/2003--02/27/2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: NONE
  • Office of Scientific & Technical Information Report Number: 825948
  • Archival Resource Key: ark:/67531/metadc785040

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 27, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 26, 2016, 6:16 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ahlfeld, C.E.; Gilleland, J.G. & Wagoner, J.D. COMMERCIAL APPLICATION OF PLASMA MASS SEPARATION IN THE ARCHIMEDES FILTER PLANT, article, February 27, 2003; Tucson, Arizona. (digital.library.unt.edu/ark:/67531/metadc785040/: accessed September 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.