Anisotropic Flow in the Forward Directions

PDF Version Also Available for Download.

Description

The STAR Forward TPCs (FTPCs) extend the STAR acceptance for charged particles into the region 2.5 < |eta| < 4.0. We see the first signal of directed flow (v{sub 1}) at RHIC energies. While v{sub 1} is consistent with zero in the central rapidity region it rises up to 2 percent at pseudorapidities of +-4. With this signal we can verify that elliptic flow (v{sub 2}) is in-plane. The measurement of v{sub 2} in the FTPCs confirms the falloff by a factor of about 2 compared to mid-rapidity previously seen by PHOBOS [1]. In addition we look for higher harmonics ... continued below

Physical Description

vp.

Creation Information

Oldenburg, Markus D. & Putschke, Jorn March 9, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The STAR Forward TPCs (FTPCs) extend the STAR acceptance for charged particles into the region 2.5 < |eta| < 4.0. We see the first signal of directed flow (v{sub 1}) at RHIC energies. While v{sub 1} is consistent with zero in the central rapidity region it rises up to 2 percent at pseudorapidities of +-4. With this signal we can verify that elliptic flow (v{sub 2}) is in-plane. The measurement of v{sub 2} in the FTPCs confirms the falloff by a factor of about 2 compared to mid-rapidity previously seen by PHOBOS [1]. In addition we look for higher harmonics (v{sub n}, n>2) where in the case of v{sub 4} a signal is seen in the STAR TPC. With the available statistics for the FTPCs we give an upper limit for these harmonics, since the results agree with zero within the errors. However, the falloff of v{sub 4} from mid-rapidity to forward-rapidities appears to be faster than for v{sub 2}.[1] B.B. Back. Phys. Rev. Lett. 89, 222301 (2002)

Physical Description

vp.

Notes

INIS; OSTI as DE00822861

Source

  • Quark Matter 2004, Oakland, CA (US), 01/11/2004--01/17/2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--54700
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 822861
  • Archival Resource Key: ark:/67531/metadc784834

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 9, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 1, 2016, 8:38 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Oldenburg, Markus D. & Putschke, Jorn. Anisotropic Flow in the Forward Directions, article, March 9, 2004; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc784834/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.