Improved Radiation Dosimetry/Risk Estimates to Facilitate Environmental Management of Plutonium Contaminated Sites

PDF Version Also Available for Download.

Description

Our Phase II research evaluated health risks associated with inhaled plutonium. Our research objectives were to: (1) extend our stochastic model for deposition of plutonium in the respiratory tract to include additional key variability and uncertainty; (2) generate and analyze risk distributions for deterministic effects in the lung from inhaled plutonium that reflect risk model uncertainty; (3) acquire an improved understanding of key physiological effects of inhaled plutonium, based on evaluations of clinical data (e.g., hematological, respiratory function, chromosomal aberrations in lymphocytes) for Mayak workers in Russia who inhaled plutonium-239; (4) develop biological dosimetry for plutonium-239 that was inhaled by ... continued below

Physical Description

vp.

Creation Information

Scott, Bobby R.; Cheng, Yung-Sung; Zhou, Yue; Tokarskaya, Zoya B. & Zhuntova, Galina V. June 11, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Our Phase II research evaluated health risks associated with inhaled plutonium. Our research objectives were to: (1) extend our stochastic model for deposition of plutonium in the respiratory tract to include additional key variability and uncertainty; (2) generate and analyze risk distributions for deterministic effects in the lung from inhaled plutonium that reflect risk model uncertainty; (3) acquire an improved understanding of key physiological effects of inhaled plutonium, based on evaluations of clinical data (e.g., hematological, respiratory function, chromosomal aberrations in lymphocytes) for Mayak workers in Russia who inhaled plutonium-239; (4) develop biological dosimetry for plutonium-239 that was inhaled by some Mayak workers (with unknown intake) based on clinical data for other workers with known plutonium-239 intake; (5) critically evaluate the validity of the linear no-threshold (LNT) risk model as it relates to cancer risks from inhaled plutonium-239 (base d on Mayak worker data); and (6) evaluate respirator filter penetration frequencies for airborne plutonium aerosols using surrogate high-density metals.

Physical Description

vp.

Source

  • Other Information: PBD: 11 Jun 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-73942-2003
  • Grant Number: FG07-00ER62511
  • DOI: 10.2172/834739 | External Link
  • Office of Scientific & Technical Information Report Number: 834739
  • Archival Resource Key: ark:/67531/metadc784832

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 11, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • June 10, 2016, 6:39 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Scott, Bobby R.; Cheng, Yung-Sung; Zhou, Yue; Tokarskaya, Zoya B. & Zhuntova, Galina V. Improved Radiation Dosimetry/Risk Estimates to Facilitate Environmental Management of Plutonium Contaminated Sites, report, June 11, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc784832/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.