Non-Contact Determination of Free Carrier Concentration in n-GaInAsSb

PDF Version Also Available for Download.

Description

GaSb-based semiconductors are of interest for mid-infrared optoelectronic and high-speed electronic devices. Accurate determination of electrical properties is essential for optimizing the performance of these devices. However, electrical characterization of these semiconductors is not straightforward since semi-insulating (SI) GaSb substrates for Hall measurements are not available. In this work, the capability of Raman spectroscopy for determination of the majority carrier concentration in n-GaInAsSb epilayers was investigated. Raman spectroscopy offers the advantage of being non-contact and spatially resolved. Furthermore, the type of substrate used for the epilayer does not affect the measurement. However, for antimonide-based materials, traditionally employed Raman laser sources ... continued below

Physical Description

1376 Kilobytes pages

Creation Information

Maslar, James E.; Hurst, Wildur S.; Wang, Christine A. & Shiau, Daniel A. November 26, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Lockheed Martin
    Publisher Info: Lockheed Martin Corporation, Schenectady, NY 12301 (United States)
    Place of Publication: Schenectady, New York

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

GaSb-based semiconductors are of interest for mid-infrared optoelectronic and high-speed electronic devices. Accurate determination of electrical properties is essential for optimizing the performance of these devices. However, electrical characterization of these semiconductors is not straightforward since semi-insulating (SI) GaSb substrates for Hall measurements are not available. In this work, the capability of Raman spectroscopy for determination of the majority carrier concentration in n-GaInAsSb epilayers was investigated. Raman spectroscopy offers the advantage of being non-contact and spatially resolved. Furthermore, the type of substrate used for the epilayer does not affect the measurement. However, for antimonide-based materials, traditionally employed Raman laser sources and detectors are not optimized for the analysis wavelength range dictated by the narrow band gap of these materials. Therefore, a near-infrared Raman spectroscopic system, optimized for antimonide-based materials, was developed. Ga{sub 0.85}In{sub 0.15}As{sub 0.13}Sb{sub 0.87} epilayers were grown by organometallic vapor phase epitaxy with doping levels in the range 2 to 80 x 10{sup 17} cm{sup -3}, as measured by secondary ion mass spectrometry. For a particular nominal doping level, epilayers were grown both lattice matched to n-GaSb substrates and lattice-mismatched to SI GaAs substrates under nominally identical conditions. Single magnetic field Hall measurements were performed on the epilayers grown on SI GaAs substrates, while Raman spectroscopy was used to measure the carrier concentration of epilayers grown on GaSb and the corresponding SI GaAs substrates. Compared to Hall measurements, Raman spectra indicated that the GaInAs/Sb epilayers grown on GaSb substrates have higher free carrier concentrations than the corresponding epilayers grown on SI GaAs substrates under nominally identical conditions. This is contrary to the assumption that for nominally identical growth conditions, the resulting carrier concentration is independent of substrate, and possible mechanisms will be discussed.

Physical Description

1376 Kilobytes pages

Notes

OSTI as DE00822276

Source

  • Other Information: PBD: 26 Nov 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LM-03K118
  • Grant Number: AC12-00SN39357
  • DOI: 10.2172/822276 | External Link
  • Office of Scientific & Technical Information Report Number: 822276
  • Archival Resource Key: ark:/67531/metadc784809

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 26, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 28, 2016, 8:52 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Maslar, James E.; Hurst, Wildur S.; Wang, Christine A. & Shiau, Daniel A. Non-Contact Determination of Free Carrier Concentration in n-GaInAsSb, report, November 26, 2003; Schenectady, New York. (digital.library.unt.edu/ark:/67531/metadc784809/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.