Final Report: Novel nanowires as probes of electron coherence and correlations in restricted geometries (DE-FG03-01ER45946)

PDF Version Also Available for Download.

Description

This is a final summary report of the research conducted under DE-FG03-01ER45946, which was a research program using metal nanostructures to examine quantum coherence of electrons in normal and ferromagnetic metals. This program was the PI's first federal research grant, and by augmenting with other funds (Packard Foundation), this grant supported two graduate students during its duration. In normal metal nanostructures, quantum coherence was assessed by two independent techniques: weak localization magnetoresistance, and time-dependent universal conductance fluctuations (TDUCF noise). This work found that, in AuPd nanowires, the coherence information inferred from these two techniques were quantitatively consistent, even in the ... continued below

Creation Information

Natelson, Douglas May 17, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This is a final summary report of the research conducted under DE-FG03-01ER45946, which was a research program using metal nanostructures to examine quantum coherence of electrons in normal and ferromagnetic metals. This program was the PI's first federal research grant, and by augmenting with other funds (Packard Foundation), this grant supported two graduate students during its duration. In normal metal nanostructures, quantum coherence was assessed by two independent techniques: weak localization magnetoresistance, and time-dependent universal conductance fluctuations (TDUCF noise). This work found that, in AuPd nanowires, the coherence information inferred from these two techniques were quantitatively consistent, even in the presence of magnetic impurity and phonon scattering. This confirmed theoretical expectations. However, in Ag and Au wires, the two techniques disagree, with noise measurements indicating a lower coherence length at low temperatures than weak localization. We have a candidate explanation for this, and are finishing these experiments. This work shows that subtleties remain in our understanding of coherence processes even in normal metals, particularly those involving the tunneling two-level systems that produce low frequency noise; this has relevance for quantum information processing implementations using metal devices. We have also studied time-dependent universal conductance fluctuations in ferromagnetic metals for the first time. The TDUCF in ferromagnetic nanowires show that the Cooperon channel of coherent processes is suppressed in these correlated materials. Furthermore, the surprisingly steep temperature dependence of the noise suggests that decoherence in these systems is through a different process than in normal metals. We are finishing measurements of ``magnetofingerprint'' conductance fluctuations in ferromagnetic metals to examine this unusual temperature dependence with an independent technique. This program has produced three papers (one Phys. Rev. B Rapid Communication, one PRB Brief Report, and a longer PRB article), with two more in preparation; it has also resulted in six APS contributed talks by students, and two invited seminars by the PI.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: FG03-01ER45946
  • DOI: 10.2172/840112 | External Link
  • Office of Scientific & Technical Information Report Number: 840112
  • Archival Resource Key: ark:/67531/metadc784690

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 17, 2005

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Aug. 3, 2016, 6:53 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Natelson, Douglas. Final Report: Novel nanowires as probes of electron coherence and correlations in restricted geometries (DE-FG03-01ER45946), report, May 17, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc784690/: accessed August 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.