Uranium-Copper Deposits Near Copper Canyon, Navajo Indian Reservation, Arizona

by

E. V. Reinhart

1952

ARIZONA GEOLOGICAL SURVEY
EMO-709

UNITED STATES ATOMIC ENERGY COMMISSION
DIVISION OF RAW MATERIALS
EXPLORATION BRANCH

URANIUM-COPPER DEPOSITS
NEAR
. COPPER CANYON
NAVAJO INDIAN RESERVATION, ARIZONA

by

E. V. Reinhardt

March 13, 1952
(Grand Junction, Colorado)
URANIUM-COPPER DEPOSITS NEAR COPPER CANYON

NAVAJO INDIAN RESERVATION, ARIZONA

Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed in this report, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
CONTENTS

Introduction ..4
Location and Accessibility4
Climate, Timber, and Water Supply5
General Geology5
Stratigraphy5
Details of the Shinarump Formation5
Structure ..7
Copper-Uranium Deposits7
Localisation of the Uranium-Copper Minerals ..7
Size and Shape of the Deposits7
Lateral Extent of the Deposits8
Grade of the Material8
Obstacles to Mining8
Conclusions9

ILLUSTRATIONS

Figure 1 - Index Map, Copper Canyon and Hoskinnini Mesa areas10
Figure 2 - Sketch of Hoskinnini Mesa and Copper Canyon showing areal geology, Utah and Arizona11
URANIUM-COPPER DEPOSITS
NEAR
COPPER CANYON
NAVAJO INDIAN RESERVATION, ARIZONA

INTRODUCTION

During the summer of 1951, Navajos conducted John W. Chester, Russell C. Cutter, and E. V. Reinhardt, Grand Junction Exploration Branch, U. S. Atomic Energy Commission, to a copper deposit in Copper Canyon. Little radioactivity was noted, and no further work was done in the area at that time. In October 1951, the same group of Navajos reported the discovery of uranium ore in another portion of the same area. The site was visited by Cutter who noted that an excavation made by the Navajos had disclosed a 3-foot thickness of low-grade uranium ore. In November 1951, Cutter again visited the area and observed that the Navajos had opened a 5-foot face of good ore.

Subsequent examinations by Cutter, Chester, Hatfield, and Mirsky of many portions of the area which were believed to contain only copper were found to be mineralized also with uranium at the base of the cliffs beneath the talus slopes. From December 1951, until February 1952, snow and muddy roads caused a suspension of the examinations. Study of the area has, therefore, been incomplete and this report is necessarily of a preliminary nature.

As a result of aerial reconnaissance, the mineralized area is known to lie in a rectangle about 25 miles long from north to south by 20 miles wide east and west. The map (Sheet 1), however, covers only the portion of the area which has been most intensively examined embracing about 150 square miles.

LOCATION AND ACCESSIBILITY

The Copper Canyon district is the southwestern portion of the Monument Valley region and is situated in San Juan County, Utah, and Navajo County, Arizona, entirely within the Navajo Indian Reservation. The natural boundaries are the San Juan River on the north, Oljeto Wash on the east, Piute Canyon on the west, and Skeleton Mesa on the south.
An unimproved dirt road branches from State Highway 47 in Monument Valley 3 miles south of the Utah state line and extends to the Oljetoh Trading Post 8 miles to the northwest in Utah. From Oljetoh Trading Post, an unimproved truck trail continues for 22 miles to the Whirlwind mine near the junction of the San Juan River and Oljetoh Wash. The Whirlwind mine road branches 3 miles north of Oljetoh Trading Post. The left, or west branch goes to Copper Canyon. It is suited for travel only in jeeps and is so indistinct that it may be followed only with difficulty. The ore horizon rims the canyon walls 1,500 feet above the bottom. A horse trail from the bottom of the Canyon ends at one mineralized outcrop; the others are accessible only by climbing from the canyon floor.

The mesas surrounding the canyons are traversed by several indistinct Navajo horse trails.

A road is now under construction by the Atomic Energy Commission onto Hoskinini Mesa which bounds Copper Canyon on its eastern side and will probably be ready for travel in jeeps by May 1952.

CLIMATE, TIMBER, AND WATER SUPPLY

There is no running water in Copper Canyon. The nearest available water is in the San Juan River, 20 miles to the north, where it is joined by Oljetoh Wash.

Rainfall averages about 6 inches a year and is insufficient to allow the growth of any timber except juniper and pinion.

The summers are hot and the winters are not severe. Temperatures are seldom as low as zero and snowfall, though sufficient to deny travel over the present poorly developed roads, would not impede transportation, if good roads were constructed into the area.

GENERAL GEOLOGY

Stratigraphy

The sedimentary rocks in the area, from youngest to oldest, are described as follows:

Jurassic

Wingate - Massive, cliff-forming red sandstone capping some of the higher mesas in the area. It is about 400 feet thick.
Triassic

Chinle - An upper member of red shale with a basal portion of red to gray or gray-green shale. Irregular sandstone lenses occur within the formation, especially in the lower one-third. Thickness is 600 to 700 feet.

Shinarump - Interbedded sandstone and conglomerate ranging in thickness from 0 to 500 feet. The base of the Shinarump is the ore-bearing horizon.

Moenkopi - Red shales and siltstones containing lenses of red sandstone. Thickness in this area is about 300 feet.

Permian

Cutler subdivided into:

DeChelly - A cross-bedded, red sandstone forming prominent cliffs. In this area, the thickness is about 300 feet.

Organ Rock - Red siltstone which has been eroded into peculiar, layered columns, in this area, about 600 feet thick.

Cedar Mesa - A white, cross-bedded sandstone of unknown thickness forming the floors of the canyons.

Details of the Shinarump Formation

The Shinarump is lenticular in its occurrence and in the Copper Canyon area, it is thicker than elsewhere on the Colorado Plateau. It caps the surface over an area of nearly 500 square miles of the Copper Canyon area. At Oljeto Wash to the eastward, the Shinarump has been eroded; southward, beneath Skeleton Mesa, it pinches out; and, on the western and northern sides, it dips under younger formations.

Throughout the region of the Colorado Plateau, the Shinarump rests on the underlying formation with an erosional unconformity. In many places, the Shinarump-filled channels are barely discernible being a hundred or more feet wide by a few feet deep. The largest channels in the Plateau are in the Copper Canyon area where they range in size from a few feet up to 1,500 feet in width and from a few inches to 300 feet in depth. The Shinarump in these channels reaches a maximum thickness of 500 feet, the normal thickness being 0 to 200 feet.
Structure

A monocline dipping easterly as steep as 50° lies immediately south of the mapped area. Along the fold, the formations have been elevated on its western side between 800 and 1,000 feet. West of the fold, the dip is 1° to 2° to the northwest. The monocline does not appear to have been a factor of control in the deposition of the ore as some of the mineralized outcrops are near it and others are many miles away.

COPPER-URANIUM DEPOSITS

Localization of the Uranium-Copper Minerals

The mineral bearing outcrops are confined to the channel structures eroded into the Moenkopi formation and filled with Shinarump sands and gravels. In the mapped area, 42 channel outcrops are now known; 18 have been examined and 24 have been observed by aerial reconnaissance and study of photographs. Of the 18 channels examined, 17 were found to be copper-bearing and 15 contained copper and uranium.

No uranium minerals have been found higher than 20 feet above the base of the channels and the best concentrations are in the lower 5 feet. In some channels, the copper minerals are confined to the lower part of the channel; in one, however, on the western side of Hoskinnini Mesa, abundant copper minerals were found from the base upward through a vertical interval of 100 feet.

The uranium occurs as carnotite filling interstices between the sand grains and as a replacement of fossil trees, twigs, and carbonaceous trash; the copper occurs as chalcocite surrounded by halos of malachite, azurite, chrysocolla, and brochantite in bedding plane seams and replacements of fossil woody material. It is believed that there is no constant ratio between copper and uranium as some of the best copper deposits are low in uranium content.

Size and Shape of the Deposits

The mineralized deposits, being confined to fossil channel-bottoms, will be elongated along the courses of the channels. As the channels are roughly U-shaped, the mineralized portions will not be as large as the tops of the channels. A channel 1,800 feet wide at the top will probably never contain more than 1,000-1,100-foot widths of mineralized material at its base. As uranium minerals have, in no locality, been observed higher than 20 feet above the channel base and are, in some places, confined to horizons as thin as a few inches, it is believed that the average thickness of the ore will not exceed 10 feet.
Drilling near the Monument No. 2 mine and elsewhere in the Monument Valley region has indicated that ore occurs in lenses in the channels and that about 6% of the total length of the channel is mineralized.

Lateral Extent of the Deposits

Several channels have been observed crossing promontories on Hoskinmini Mesa; others have been projected across the mesa; a number, entering Nokai Mesa on the western side of Copper Canyon, have been observed. Those channels which have been projected with a reasonable assurance of accuracy are shown on Sheet 1 and embrace a surface area of 3.8 square miles. An attempt has been made to project only about one-third of the known channels in the mapped area which, in turn, is somewhat less than one-third of the total potential area observed by aerial reconnaissance. In the entire Copper Canyon district, therefore, it is calculated that 38 square miles of the surface is underlain by channels of which about 6%, or 2.28 square miles may reasonably be expected to be mineralized. This should be reduced to 2 square miles or about 50,000,000 square feet because of the U-shape of the channels. The mineralized material will probably average about 10 feet thick indicating a possible 500,000,000 cubic feet or 35,700,000 tons. Exploration and drilling could materially raise or lower this figure.

Grade of the Material

A face 40 feet long by 5 feet thick of ore opened by Navajos on the western side of Copper Canyon averaged 0.35% U₃O₈. Samples assaying from 0.10% to 0.68% U₃O₈ have been obtained from widely separated points. Copper assays as high as 18% have been obtained. A copper-bearing outcrop 100 feet high on the eastern side of Copper Canyon appears, from visual examination, to contain a minimum of 1% copper. Some of the uranium-bearing outcrops, on the other hand, are quite low in copper content. From data now at hand, it seems likely that the grade of material, if mined from 5 to 20 feet thick might average about 0.10% U₃O₈ and 1.00% copper. These figures may have to be revised upward or downward as drilling proceeds.

Obstacles to Mining

1. The ore does not occur in one large body, but in a large number of bodies scattered over 500 square miles.

2. The nearest adequate supply of water is the San Juan River, which flows at distances of 3 to 25 miles from the deposits.
3. There is no suitable mine timber in the area.

4. Some of the deposits could be stripped and mined by open pit methods; others are buried beneath 200 to 480 feet of overburden and would have to be mined by underground methods. Block caving could not be accomplished because the underlying Moenkopi formation is too soft to withstand erosion at draw-raises. The underground mining method would have to be a modified room and pillar system. With this method, 20% to 25% of the ore would be lost in pillars.

5. A large amount of metallurgical testing will have to be done to assure a good recovery of both uranium and copper and a clean separation of the two metals.

CONCLUSIONS

Based on our present knowledge of the Copper Canyon area, there is a probability of the existence of a large tonnage of low-grade copper-uranium ore. It is now believed that at least 35,000,000 tons can be proved with a probable grade of 0.10% U₃O₈ and 1% copper. To verify the estimated tonnage and grade, a few thousand feet of drilling will be done preliminary to letting a contract for 100,000 feet. Thereafter, it is now anticipated that several million feet of drilling will have to be done to fully outline all the channels.

The road now under construction onto Hoskinnini Mesa should be ready for travel by May 1952, and the preliminary drilling will be started as soon as the road is passable for drill rigs and water trucks. The first 100,000-foot contract, however, cannot be awarded before September 1952.
SHINRUMP
Moenkopi
De Chelly
Organ Rock

Channel Outcrop or group of Outcrops

Channel Trends

Contacts Examined

Contacts Not Examined

Copper Mineralization

Uranium Mineralization

Road

Drainage

EXPLANATION

Map made from uncontrolled Mosaic of Aerial Photos.
Approx. Scale=1:64,000 (1:100,000) North shown.
It is only approximate Geology by R.C. Cutter.

U.S. ATOMIC ENERGY COMMISSION
GRAND JUNCTION EXPLORATION BRANCH OFFICE OF RAW MATERIALS

SKETCH OF Hoskininini MESA & CUPPER CANYON SHOWING AREAL GEOLOGY

SCALE: 1/3,600 (AP"

DATE: MAR. 1952

CONTOUR INTERVAL:

TOPO. BY: CHECKED:

R.C.C.

ACCOMPANIES:

GEOL. BY:

R.C.C

CORRECT:

DRAWN BY: R.C.C. REVISED: R.E.D

TRACED BY: J.R.K.

APPROVED:

SHEET:

FILE INDEX:

UTAH & ARIZONA