Carbon Dioxide Capture From Flue Gas Using Dry Regenerable Sorbents Quarterly Technical Progress Report: July-September 2004

One of 8 reports in the title: Carbon Dioxide Capture From Flue Gas Using Dry Regenerable Sorbents Quarterly Report available on this site.

PDF Version Also Available for Download.

Description

Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based sorbents for the capture of CO{sub 2} from power plant flue gas. Electrobalance, fixed-bed and fluid-bed reactors were used to examine both the CO{sub 2} capture and sorbent regeneration phases of the process. Sodium carbonate-based sorbents (calcined sodium bicarbonate and calcined trona) were the primary focus of the testing. Supported sodium carbonate and potassium carbonate sorbents were also tested. Sodium carbonate reacts with CO{sub 2} and water vapor contained in flue gas at temperatures between 60 and 80 C to form sodium bicarbonate, or an intermediate salt (Wegscheider's salt). Thermal … continued below

Physical Description

15 pages

Creation Information

Green, David A.; Turk, Brian S.; Portzer, Jeffrey W.; Gupta, Raghubir P.; McMichael, William J. & Nelson, Thomas November 1, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Titles

Description

Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based sorbents for the capture of CO{sub 2} from power plant flue gas. Electrobalance, fixed-bed and fluid-bed reactors were used to examine both the CO{sub 2} capture and sorbent regeneration phases of the process. Sodium carbonate-based sorbents (calcined sodium bicarbonate and calcined trona) were the primary focus of the testing. Supported sodium carbonate and potassium carbonate sorbents were also tested. Sodium carbonate reacts with CO{sub 2} and water vapor contained in flue gas at temperatures between 60 and 80 C to form sodium bicarbonate, or an intermediate salt (Wegscheider's salt). Thermal regeneration of this sorbent produces an off-gas containing equal molar quantities of CO{sub 2} and H{sub 2}O. The low temperature range in which the carbonation reaction takes place is suited to treatment of coal-derived flue gases following wet flue gas desulfurization processes, but limits the concentration of water vapor which is an essential reactant in the carbonation reaction. Sorbent regeneration in an atmosphere of CO{sub 2} and water vapor can be carried out at a temperature of 160 C or higher. Pure CO{sub 2} suitable for use or sequestration is available after condensation of the H{sub 2}O. Flue gas contaminants such as SO{sub 2} react irreversibly with the sorbent so that upstream desulfurization will be required when sulfur-containing fossil fuels are used. Approximately 90% CO{sub 2} capture from a simulated flue gas was achieved during the early stages of fixed-bed reactor tests using a nominal carbonation temperature of 60 C. Effectively complete sorbent carbonation is possible when the fixed-bed test is carried out to completion. No decrease in sorbent activity was noted in a 15-cycle test using the above carbonation conditions coupled with regeneration in pure CO{sub 2} at 160 C. Fluidized-bed reactor tests of up to five cycles were conducted. Carbonation of sodium carbonate in these tests is initially very rapid and high degrees of removal are possible. The exothermic nature of the carbonation reaction resulted in a rise in bed temperature and subsequent decline in removal rate. Good temperature control, possibly through addition of supplemental water and evaporative cooling, appears to be the key to getting consistent carbon dioxide removal in a full-scale reactor system. The tendency of the alkali carbonate sorbents to cake on contact with liquid water complicates laboratory investigations as well as the design of larger scale systems. Also their low attrition resistance appears unsuitable for their use in dilute-phase transport reactor systems. Sodium and potassium carbonate have been incorporated in ceramic supports to obtain greater surface area and attrition resistance, using a laboratory spray dryer. The caking tendency is reduced and attrition resistance increased by supporting the sorbent. Supported sorbents with loading of up to 40 wt% sodium and potassium carbonate have been prepared and tested. These materials may improve the feasibility of large-scale CO{sub 2} capture systems based on short residence time dilute-phase transport reactor systems.

Physical Description

15 pages

Notes

OSTI as DE00836823

Source

  • Other Information: PBD: 1 Nov 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • June 28, 2019, 6:17 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Green, David A.; Turk, Brian S.; Portzer, Jeffrey W.; Gupta, Raghubir P.; McMichael, William J. & Nelson, Thomas. Carbon Dioxide Capture From Flue Gas Using Dry Regenerable Sorbents Quarterly Technical Progress Report: July-September 2004, report, November 1, 2004; United States. (https://digital.library.unt.edu/ark:/67531/metadc783635/: accessed December 9, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen