In situ Removal of Actinides and Strontium from High Level Waste Tanks, Tea Bag versus Adsorption Column

PDF Version Also Available for Download.

Description

Initiatives are underway at the Savannah River Site (SRS) to accelerate the disposition of the supernate and salt portions of the waste in the SRS High Level Waste (HLW) tank farm system. Significant savings in processing time and overall cost could be achieved by in situ treatment of waste supernate or dissolved salt inside a tank farm waste tank. For treatment of actinides and strontium in waste, the baseline method is sorption onto monosodium titanate (MST), an engineered powder with mean particle size of approximately 10 microns. In a separate study at the Savannah River National Laboratory (SRNL), engineered forms ... continued below

Physical Description

vp.

Creation Information

MARK, CROWDER November 17, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Initiatives are underway at the Savannah River Site (SRS) to accelerate the disposition of the supernate and salt portions of the waste in the SRS High Level Waste (HLW) tank farm system. Significant savings in processing time and overall cost could be achieved by in situ treatment of waste supernate or dissolved salt inside a tank farm waste tank. For treatment of actinides and strontium in waste, the baseline method is sorption onto monosodium titanate (MST), an engineered powder with mean particle size of approximately 10 microns. In a separate study at the Savannah River National Laboratory (SRNL), engineered forms of MST were developed and compared on a small (250-mL) scale in batch tests. In the current study, a promising form of engineered MST was tested under two conditions: a traditional ion exchange (or adsorption) column and a porous, flow through device called a tea bag, immersed in solution. Both tests used the same amount of engineered MST to treat 10 L of simulated waste solution containing plutonium and strontium.

Physical Description

vp.

Source

  • Other Information: PBD: 17 Nov 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: WSRC-TR-2004-00384
  • Grant Number: AC09-96SR18500
  • DOI: 10.2172/837908 | External Link
  • Office of Scientific & Technical Information Report Number: 837908
  • Archival Resource Key: ark:/67531/metadc783597

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 17, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • May 5, 2016, 4:20 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

MARK, CROWDER. In situ Removal of Actinides and Strontium from High Level Waste Tanks, Tea Bag versus Adsorption Column, report, November 17, 2004; South Carolina. (digital.library.unt.edu/ark:/67531/metadc783597/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.