Final Technical Report For Closeout of Award No. DE-FG02-03ER41250

PDF Version Also Available for Download.

Description

Michigan State University (MSU) activities in support of this grant were made as part of a larger collaboration including Los Alamos National Laboratory, Argonne National Laboratory, and Lawrence Berkeley National Laboratory. The main task of the collaboration was the development of an end-to-end multiparticle beam-dynamics simulation tool for computation of beam losses in the RIA driver linac. As the first part of this task, it was planned to modify PARMTEQ for multicharge-state beam-dynamics simulation in the LEBT and RFQ. The next part of this task was to develop a new multiparticle parallel code to model the superconducting driver linac. The ... continued below

Creation Information

York, Richard C. July 20, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Michigan State University (MSU) activities in support of this grant were made as part of a larger collaboration including Los Alamos National Laboratory, Argonne National Laboratory, and Lawrence Berkeley National Laboratory. The main task of the collaboration was the development of an end-to-end multiparticle beam-dynamics simulation tool for computation of beam losses in the RIA driver linac. As the first part of this task, it was planned to modify PARMTEQ for multicharge-state beam-dynamics simulation in the LEBT and RFQ. The next part of this task was to develop a new multiparticle parallel code to model the superconducting driver linac. The output particle distributions from PARMTEQ could then be used as input for simulations through the superconducting linac, using the new parallel code with different random number seeds. The stripping of heavy ions is proposed for the RIA driver linac to increase acceleration efficiency. MSU developed a complete charge stripping foil model to evaluate the impact of the stripping foil on the beam transverse and longitudinal emittance. The stripping foil model was developed in LANA [1] and included the effects of elastic and inelastic scattering, ionization energy loss, and thickness variation in the stripping foil using the code SRIM [2]. This model was provided to the collaboration for inclusion in the new simulation tools. Benchmarking information in support of the new code development was provided by supplying the collaboration with the MSU driver linac model consisting of input information for LANA and DIMAD [3] The output of simulations using LANA and DIMAD were also provided. As an element of these activities, LANA was modified to provide simulation results with high statistics. The simulation results from the newly developed simulation tools and those of MSU gave statistically equivalent results.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DE/FG02/03ER41250
  • Grant Number: FG02-03ER41250
  • DOI: 10.2172/842165 | External Link
  • Office of Scientific & Technical Information Report Number: 842165
  • Archival Resource Key: ark:/67531/metadc783589

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 20, 2005

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Aug. 3, 2016, 3:46 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

York, Richard C. Final Technical Report For Closeout of Award No. DE-FG02-03ER41250, report, July 20, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc783589/: accessed November 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.