Thermal and Flow Considerations for the 80K Shield of the SSC Magnet Cryostats

Superconducting Super Collider Laboratory
Disclaimer Notice

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Superconducting Super Collider Laboratory is an equal opportunity employer.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Thermal and Flow Considerations for the 80K Shield of the SSC Magnet Cryostats*

S. Abramovich, A. Yücel, and J. Demko

Superconducting Super Collider Laboratory†
2550 Beckleymeade Ave.
Dallas, TX 75237

M. Thirumaleshwar
Centre for Advanced Technology
Indore, India

April 1993

†Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract No. DE-AC35-89ER40486.
THERMAL AND FLOW CONSIDERATIONS FOR THE 80 K SHIELD OF THE SSC MAGNET CRYOSTATS.

S. Abramovich, A. Yücel, M. Thirumaleshwar†, J. Demko
Superconducting Super Collider Laboratory, Dallas, Tx, USA
†Guest collaborator from Centre for Advanced Technology, Indore, India.

INTRODUCTION

The nominal temperatures in the SSC cryostat range between 4.2 K in the superconducting magnet and 300 K on the cryostat outer wall. To minimize the 4 K heat load, a thermal shield cooled by liquid and vapor nitrogen flows at 84 K and one at 20 K cooled by helium flow are incorporated in the cryostat. Tubes attached to the shields serve as conduits for cryogens. The liquid nitrogen tube in the cryostat is used for cryostat refrigeration and also for liquid distribution around the SSC rings. The second nitrogen line is used to return the vapor to the helium refrigerators for further processing. The nominal N_2 flow from a 4.3-km long cryogenic string (4 sections) to the surface is 64 g/s. The total liquid nitrogen consumption of approximately 5000 g/s will be supplied at one, two or more locations on the surface. The supply, distribution, circulation and recooling schemes for the LN2 system are described in detail by McNab et al.

The total heat load of the 80 K shield is estimated as 3.2 W/m. About 50% is composed of infrared radiation and remaining 50% by heat conduction through supports, vacuum barriers and other thermal connections between the shield and the 300 K outer wall. The required LN2 flow rate depends on the distribution and circulation schemes. The LN2 temperature will in turn vary depending on the flow rate and on the recooling methods used. For example, with a massflow of 400 g/s of LN2 the temperature rises from 82 K to 86 K between two compact recoolers 1 km apart. This temperature is higher than desired. The temperature can be reduced by increasing the flow rate of the liquid or by using the continuous recooling.

This paper discusses some thermal problems caused by certain mechanical designs of the 80 K shield and the possible improvement by using continuous recooling. In the following, we present results of the 80 K shield temperature distribution analysis, the 20 K shield heat load augmentation resulting from the increased 80 K shield temperatures, the continuous nitrogen recooling scheme and some flow timing related analysis.

THE SYSTEM GEOMETRY AND OPERATION

The two parallel rings of the collider and the HEB ring are constructed in parallel tunnels at an inclination of 0.2 degrees with a local minimum of 0 degrees. The superconductive magnets strings are divided into sections ranging in length from 350 m to 1350 m with U-tube connections in-between. This arrangement allows for connecting compact nitrogen recoolers which is the basic LN2 recooling system. Vapor generated in the recoolers is returned through the LN2 line in the cryostat back to the helium refrigerator for precooling.

A possible alternative to nitrogen recooling uses controlled injection of LN2 into the LN2 lines. The controlled LN2 valve may be installed in the cryogenic isolation boxes (SPRI) on the uphill side of each section. The liquid flows downhill and by boiling it performs an additional recooling function. In sections of the tunnel where the inclination is too small this method can not be implemented and denser compact recoolers have to be used. The inlet LN2 pressure to the helium plant (on the surface) is 0.13 MPa. The lowest pressure in the LN2 line in the tunnel (in the sector Feed Box) is expected to be 0.14 MPa. In this place the ideal recooling temperature is 80.2 K. Due to the vapor flow pressure drop in the LN2 tube, the pressure in the SPRE End Box (4.3 km upstream) is 0.17 MPa with ideal recooling temperature 82 K. If the string is longer than nominal, the pressures and the recooling temperatures will be higher.

Due to the temperature approach in the LN2 recoolers, the thermal resistance between the nitrogen fluids and the walls of the tubes, the resistance of the straps connecting the tube to the shield and thermal resistance of the shield, the temperature distribution in the shield will range between 84 K and 98 K. This may cause a major increase of the 20 K heat loads compared with a baseline computed using an average shield temperature of 84 K.

STEADY STATE CONDITIONS FOR NOMINAL STRINGS

Figure 1 shows a sketch of the thermal shield design and the temperature changes in the LN2 line for a flow rate of 400 g/s and a recooling system based on compact recoolers located at different intervals. For ideal recooling (the recooler output temperature lies on line a-i), the highest LN2 temperature is 85K for a recooler every 1 km (point h1), 88.2 K if the recoolers are 2 km apart (point h2), and 95 K if the recoolers are 4 km apart (point h3). In well-designed practical recoolers a temperature approach 2 K may be expected. The 80 K shield temperature distributions and the corresponding 20 K heat load augmentation were calculated for various LN2 recooler temperatures between 80 K and 92 K. The vapor line temperature was fixed at 80 K. The following cases were analyzed: Case 1 where the heat is removed by both the liquid and vapor LN2 lines (with liquid injection), for conservative parameters of heat transfer. These include the effects of the relative low conductivity of the stainless steel but also due to the discontinuous or discrete nature of the connections between the shields and the pipes. Case 2 similar to Case 1 but with good thermal conductance between the straps and the nitrogen, neglecting the resistance of the pipe. Case 3 assumes the heat load is removed by the liquid nitrogen line only. Representative temperature distributions for half of a shield section between two posts are presented in Figure 2. The shield emissive power (normalized to 84 K) variations for each of these cases are shown in Figure 3. The amounts of heat removed by the vapor and liquid lines are given in Figure 4. For Case 2, the liquid temperature increases asymptotically to a steady state point if the initial liquid temperature is low, and decreases asymptotically to the same point if the initial liquid temperature is high.

Figure 1: 80 K Shield and the Temperature Change in the Liquid Line

<table>
<thead>
<tr>
<th>Shield</th>
<th>top</th>
<th>bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>thickness</td>
<td>1.6 mm</td>
<td>3.5mm</td>
</tr>
<tr>
<td>circumference</td>
<td>1217mm</td>
<td>646mm</td>
</tr>
</tbody>
</table>

Material Al 6061-T6

Tube: stainless steel 58mmID 1.5mm thick

Straps: cross section 106.4 mm² ETP Copper

length 182.5 mm

30 straps per line

Figure 2: Sample temperature profiles for the 80 K shield.

a) Case 1: LN2 and GN2 lines active, b) Case 3: LN2 line active only.
THE CONTINUOUS RECOOLING MODEL AND THE INITIAL TRANSIENTS

Liquid nitrogen injected into the GN2 line flows downhill. The pressure in the line is maintained as low as possible due to other system constraints, to enable adequate boiling conditions in the recooling system. Figure 5 represents a typical 1080 meter long section in the collider. The inlet vapor flow to the section is given by \(M_v(0) \) and varies from 0 to 48 g/s. The vapor flow rate at the end of each section, \(M_v(1) \), can be 16, 32, 48, or 64 g/s as it flows back to the feed box. The flow rate of the injected liquid at the upstream location, \(M_l \), is nominally taken to be 16 g/s. Also shown in Figure 5 is a typical control volume used for analysis purposes with a length \(dx \), that has \(q(x) \) of nominal heat transfer and \(q_{wall} \) of transient heat transfer from cooling down of the tube wall in the full transient situation, and liquid evaporating at a rate of \(M_{lv} \). The flow direction of liquid in the line around the collider ring may be clockwise, counterclockwise, uphill or downhill depending on the N2 delivery and distribution system in use, which may change occasionally during normal operation.

THE FLOW MODEL

Under ideal continuous recooling conditions the whole heat load is absorbed by the latent heat in the vapor line. If the injection rate is smaller than ideal and sections of the tube are dry, the parallel liquid line is assumed to absorb the heat load and the vapor line remains isothermal. Also for ideal continuous recooling liquid nitrogen there should be no collection of the liquid at the end of the nitrogen line to prevent flooding. For the analysis of the continuous recooling scheme, it was assumed that the continuous recooler liquid flow is driven primarily by gravity, the flow of liquid was assumed to be stratified, and that the transient channel flow equations of Manning would apply for the liquid. Additional assumptions made are that the liquid-vapor interface is frictionless, there is perfect heat transfer between the liquid and the shield, and the shield has a high thermal conductance and may be considered isothermal. The mass of liquid evaporated in a control volume is taken as the 80K heat load divided by the latent heat at the line pressure.

STEADY STATE FLOW

The steady state temperatures are evaluated for different liquid injection rates. The local liquid flow cross section, mass flow rate, velocity and integral liquid inventory are calculated. In Figure 7, the steady state inventory of liquid nitrogen for the first 400 meters is shown for different injection rates. Figure 8 shows the time required for the liquid to reach a certain location for the same parameters.
Transient calculations were performed to determine the time required to reach a steady state liquid flow in the nitrogen line. The analysis and the numerical solution procedure used is described by Abramovich et al. The transient distribution of liquid nitrogen mass flow for a constant initial injection rate of 16 g/s with a tube inclination angle of 0.2 degrees is shown in Figure 9. The liquid front is seen to be very steep, and due to evaporation of the liquid along the tube, the flow linearly decreases proceeding down the tube. The predictions indicate that at these conditions it takes 16,000 seconds for the liquid flow to reach a steady state condition at this inclination angle.

One purpose of this investigation is to provide some analysis that supports the development of a control strategy for continuous injection of liquid into the nitrogen vapor line of the 80K shield. The previous cases provide some fundamental solutions that provide time scales for filling the tube at a constant mass flow rate of 16 g/s, and the times for some perturbations to propagate along the liquid stream. Simulations were carried out for various step changes in the injection rates.

Another important result is for a case where the initial injection rate of 30 g/s was applied and after some period reduced to a nominal value of 16 g/s. This would be done to reduce the time required to supply liquid along the whole length of the nitrogen vapor line. Figure 10 shows results for an inclination of 0.2 degrees with an initial liquid injection rate of 30 g/s which is stepped down after 2000 seconds to a mass flow of 16 g/s. It is seen in this figure that the liquid pulse travels the whole 1000 meter length without completely disappearing. For this case the tube contains liquid along its entire length after 12000 seconds which is about 4000 seconds less than the constant injection case.

REFERENCES
1. R. Than, S. Abramovich and V. Ganni: The SSC Cryogenic System Design and Operating Modes.
7. S Abramovich, J Demko, M Thirumaleshwar: Nitrogen System for the SSC, Continuous recooling by injection of liquid into the vapor line, SSCL CRYO tech note (to be published).