Effect of Nitrate on the Repassivation Potential of Alloy 22 in Chloride Containing Environment

PDF Version Also Available for Download.

Description

The study of Alloy 22 was undertaken in several selected nitrate/chloride (NO{sub 3}{sup -}/Cl{sup -}) electrolytes with chloride concentrations [Cl{sup -}] of 1.0, 3.5 and 6.0 molal with [NO{sub 3}{sup -}]/[Cl{sup -}] ratios of 0.05, 0.15 and 0.5 at temperatures up to 100 C. The repassivation potentials increased with increase in [NO{sub 3}{sup -}]/[Cl{sup -}] ratio and decreased with increase in temperature. The absolute [Cl{sup -}] was found to have less of an effect on the repassivation potential compared with temperature and the [NO{sub 3}{sup -}]/[Cl{sup -}]. Regression analyses were carried out to describe the relationship between the repassivation potential, ... continued below

Physical Description

14 pages

Creation Information

Ilevbare, G.; King, K.; Gordon, S.; Elayat, H.; Gdowski, G. & Summers, T. September 21, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The study of Alloy 22 was undertaken in several selected nitrate/chloride (NO{sub 3}{sup -}/Cl{sup -}) electrolytes with chloride concentrations [Cl{sup -}] of 1.0, 3.5 and 6.0 molal with [NO{sub 3}{sup -}]/[Cl{sup -}] ratios of 0.05, 0.15 and 0.5 at temperatures up to 100 C. The repassivation potentials increased with increase in [NO{sub 3}{sup -}]/[Cl{sup -}] ratio and decreased with increase in temperature. The absolute [Cl{sup -}] was found to have less of an effect on the repassivation potential compared with temperature and the [NO{sub 3}{sup -}]/[Cl{sup -}]. Regression analyses were carried out to describe the relationship between the repassivation potential, temperature, [Cl{sup -}] and [NO{sub 3}{sup -}] for the conditions tested.

Physical Description

14 pages

Notes

OSTI as DE00837707

Source

  • Other Information: No journal information given for this preprint

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NONE
  • Office of Scientific & Technical Information Report Number: 837707
  • Archival Resource Key: ark:/67531/metadc783475

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 21, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Feb. 10, 2016, 7:28 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ilevbare, G.; King, K.; Gordon, S.; Elayat, H.; Gdowski, G. & Summers, T. Effect of Nitrate on the Repassivation Potential of Alloy 22 in Chloride Containing Environment, article, September 21, 2004; Las Vegas, Nevada. (digital.library.unt.edu/ark:/67531/metadc783475/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.