Amorphization of Laves-Phase Precipitates in Zircaloy-4 by Neutron Irradiation

PDF Version Also Available for Download.

Description

Examination of corrosion coupons by transmission electron microscopy after their exposure in the Idaho Advanced Test Reactor (ATR) has broadened the Zircaloy-4 precipitate-amorphization database and validated a new kinetic model for previously unavailable values of temperature and fast-neutron flux. The model describes the amorphization of Zr(Fe,Cr){sub 2} intermetallic precipitates in zirconium alloys as a dynamic competition between radiation damage and thermal annealing that leaves some iron atoms available for flux-assisted diffusion to the zirconium matrix. It predicts the width of the amorphous zone as a function of neutron flux (E>1 MeV), temperature, and time. In its simplest form, the model ... continued below

Physical Description

7 p.

Creation Information

Peters, H.R.; Taylor, D.F. & Yang, Walter J.S. April 23, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Examination of corrosion coupons by transmission electron microscopy after their exposure in the Idaho Advanced Test Reactor (ATR) has broadened the Zircaloy-4 precipitate-amorphization database and validated a new kinetic model for previously unavailable values of temperature and fast-neutron flux. The model describes the amorphization of Zr(Fe,Cr){sub 2} intermetallic precipitates in zirconium alloys as a dynamic competition between radiation damage and thermal annealing that leaves some iron atoms available for flux-assisted diffusion to the zirconium matrix. It predicts the width of the amorphous zone as a function of neutron flux (E>1 MeV), temperature, and time. In its simplest form, the model treats the crystalline/amorphous and precipitate/matrix interfaces as parallel planes, and its accuracy decreases for small precipitates and high fluence as the amorphous-zone width approaches precipitate dimensions. The simplest form of the model also considers diffusion to be rate-determining. This is an accurate approximation for steady-state conditions or slow changes in flux and temperature, but inappropriate for the analysis of faster transients. The paper addresses several difficulties inherent in measuring amorphous-zone width, and utilizes the expanded database to evaluate the improvements in predictive accuracy available through both conversion of the model to spherical coordinates and extension of its time dependency.

Physical Description

7 p.

Notes

OSTI as DE00008219

Medium: P; Size: 7 pages

Source

  • 9th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems, Newport Beach, CA (US), 08/01/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: KAPL-P-000214
  • Grant Number: AC12-76SN00052
  • Office of Scientific & Technical Information Report Number: 8219
  • Archival Resource Key: ark:/67531/metadc783472

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 23, 1999

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 11, 2017, 3:07 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Peters, H.R.; Taylor, D.F. & Yang, Walter J.S. Amorphization of Laves-Phase Precipitates in Zircaloy-4 by Neutron Irradiation, article, April 23, 1999; United States. (digital.library.unt.edu/ark:/67531/metadc783472/: accessed May 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.