An In Tank Processing (ITP) technology was developed at the Savannah River Site to remove Cs-137 from high-level waste supernates. During the ITP process monosodium titanate and sodium tetraphenylborate (NaTPB) were added to the salt supernate to adsorb Sr-90/Pu-238 and precipitate Cs-137 as CsTPB, respectively. This process was demonstrated at the SRS in 1983. The demonstration produced 53,000 gallons of 2.5 weight per cent Cs rich precipitate containing TPB, which was later washed and diluted to 250,000 gallons. This material is currently stored in SRS tanks. The washed precipitate was to ultimately be disposed in borosilicate glass in the Defense …
continued below
Publisher Info:
Savannah River Site (United States)
Place of Publication:
South Carolina
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this report.
Follow the links below to find similar items on the Digital Library.
Description
An In Tank Processing (ITP) technology was developed at the Savannah River Site to remove Cs-137 from high-level waste supernates. During the ITP process monosodium titanate and sodium tetraphenylborate (NaTPB) were added to the salt supernate to adsorb Sr-90/Pu-238 and precipitate Cs-137 as CsTPB, respectively. This process was demonstrated at the SRS in 1983. The demonstration produced 53,000 gallons of 2.5 weight per cent Cs rich precipitate containing TPB, which was later washed and diluted to 250,000 gallons. This material is currently stored in SRS tanks. The washed precipitate was to ultimately be disposed in borosilicate glass in the Defense Waste Processing Facility. Due to safety concerns the ITP process was abandoned in 1998, and new technologies are being researched for Cs-137 removal. In order to make space in the SRS Tank farm, the tank waste must be removed. Therefore, the tank waste must be processed to reduce or eliminate levels of nitrates, nitrites, and sodium tetra phenylborate (NaTPB) in order to reduce impacts of these species before it is vitrified at the DWPF. Fluidized Bed Steam Reforming (FBSR) is being considered as a candidate technology for destroying the nitrates and the NaTPB prior to melting. The purposes of the current study, organic destruction and downstream processing of T48H waste slurry were fulfilled. TPB was destroyed in all 19 samples tested with the simulated FBSR process at operational temperatures 650-725 degrees Celsius.
This report is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
JANTZEN, CAROLM.Disposition of Tank 48H Organics By Fluidized Bed Steam Reforming (FBSR) (U),
report,
March 29, 2004;
South Carolina.
(https://digital.library.unt.edu/ark:/67531/metadc783427/:
accessed February 14, 2025),
University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.