Minor Actinides Transmutation Scenario Studies in PWR with Innovative Fuels

PDF Version Also Available for Download.

Description

With the innovative fuels (CORAIL, APA, MIX, MOX-UE) in current PWRs, it is theoretically possible to obtain different plutonium and minor actinides transmutation scenarios, in homogeneous mode, with a significant reduction of the waste radio-toxicity inventory and of the thermal output of the high level waste. Regarding each minor actinide element transmutation in PWRs, conclusions are : neptunium : a solution exists but the gain on the waste radio-toxicity inventory is not significant, americium : a solution exists but it is necessary to transmute americium with curium to obtain a significant gain, curium: Cm244 has a large impact on radiation ... continued below

Physical Description

10 pages

Creation Information

Grouiller, J. P.; Boucher, L.; Golfier, H.; Dolci, F.; Vasile, A. & Youinou, G. February 26, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

With the innovative fuels (CORAIL, APA, MIX, MOX-UE) in current PWRs, it is theoretically possible to obtain different plutonium and minor actinides transmutation scenarios, in homogeneous mode, with a significant reduction of the waste radio-toxicity inventory and of the thermal output of the high level waste. Regarding each minor actinide element transmutation in PWRs, conclusions are : neptunium : a solution exists but the gain on the waste radio-toxicity inventory is not significant, americium : a solution exists but it is necessary to transmute americium with curium to obtain a significant gain, curium: Cm244 has a large impact on radiation and residual power in the fuel cycle; a solution remains to be found, maybe separating it and keeping it in interim storage for decay into Pu240 able to be transmuted in reactor.

Physical Description

10 pages

Source

  • Waste Management 2003 Symposium, Tucson, AZ (US), 02/23/2003--02/27/2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 827443
  • Archival Resource Key: ark:/67531/metadc783401

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 26, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 27, 2016, 1:58 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Grouiller, J. P.; Boucher, L.; Golfier, H.; Dolci, F.; Vasile, A. & Youinou, G. Minor Actinides Transmutation Scenario Studies in PWR with Innovative Fuels, article, February 26, 2003; Tucson, Arizona. (digital.library.unt.edu/ark:/67531/metadc783401/: accessed April 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.