SMART SCREENING SYSTEM (S3) IN TACONITE PROCESSING

PDF Version Also Available for Download.

Description

The conventional vibrating machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in most every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalance rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors along with the vibrating machines and supporting structure ... continued below

Physical Description

31 pages

Creation Information

Allaei, Daryoush & Mohammed, Asim Syed April 1, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The conventional vibrating machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in most every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalance rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors along with the vibrating machines and supporting structure shake other machines and structure in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The conceptual designs for key components of the SmartScreens{trademark} have been developed. These key components include: smart motors and resonators. It is shown that the smart motors have a good life and performance. The resonators are utilized to amplify motion generated by smart motors. Resonator designs are selected based on the final system requirement and vibration characteristics. In addition, a tabletop demo unit was developed and demonstrated during a conference in 2003. This demo is reviewed in this report. The concept has shown promise and the program is on schedule.

Physical Description

31 pages

Notes

OSTI as DE00825676

Source

  • Other Information: PBD: 1 Apr 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: FC26-02NT41470
  • DOI: 10.2172/825676 | External Link
  • Office of Scientific & Technical Information Report Number: 825676
  • Archival Resource Key: ark:/67531/metadc783265

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Jan. 3, 2017, 5:33 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Allaei, Daryoush & Mohammed, Asim Syed. SMART SCREENING SYSTEM (S3) IN TACONITE PROCESSING, report, April 1, 2004; United States. (digital.library.unt.edu/ark:/67531/metadc783265/: accessed December 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.