Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

Shas V. Mattigod, Andrew Felmy, Li Wang
Pacific Northwest National Laboratory, Richland, Washington

David T. Hobbs
Savannah River National Laboratory, Aiken, South Carolina

Ilhan Aksay, Dan Dabbs
Princeton University, Princeton, New Jersey
Relevance

- Tank sludge retrieval and pretreatment precede vitrification.
- Al is a major component of both sludge and supernate fractions of HLW.
- Minimization of HLW glass volume requires sludge washing and leaching to dissolve Al-containing wastes.
Processing Hiatus

- Scaling and clogging from Al-Si phases:
 - 2H evaporator at SRS shutdown
 - Plugging of Cs-removal columns at SRS from mineral formation.
 - Occasional blocked pipes at Hanford tank farm due to aluminous precipitates.

- Processing hiatus results in escalated cost and extended time for treating tank wastes
Precipitates
- Plugged concentrate line (97 - 98)
- >3000 kg solids in evaporator (99)

Down time and Cost
- Gravity Drain Line: 4 mo - $4M
- Evaporator: >22 mo, $10+ M
Critical Need

- Limited knowledge about mechanisms of formation and transformation of Al-Si phases under tank and pretreatment conditions (Si/Al ~ 0.003, high salt and OH⁻, range of temperature)

- Understand factors that control the extent and the rate of formation of Al-Si phases that form hard cementitious scales

- Develop process schemes to avoid/inhibit formation of cementitious Al-Si phases.
Objectives

✓ Formation, solubilities, and transformation of Al-bearing phases under processing conditions

✓ Factors that promote formation of mixed aluminosilicate and uranium bearing phases

✓ Inhibiting effects of organics on scale formation.

✓ Thermodynamic modeling of aluminosilicate and uranium solid phase formation
Previous Work

Identify and characterize aluminosilicate precipitates

Al/Si molar ratio: 20, 50
OH: 0.1, 1, 4.5M
NaNO3: 3M
Temperature: 40, 80, 120, 175 ºC
Predominance Diagrams

Precursor Phase

Zeolite A
Crystallization Kinetics
Synopsis

- **Solid Phase Formation**
 Amorphous precursor phase precipitates initially - with time converts to mainly zeolitic crystalline phases

- **Al/Si Ratio in Precipitates**
 Precipitates become more aluminous with increasing temperature and Al concentration

- **Crystallization Kinetics**
 Higher OH\(^-\), increasing temperature promote more rapid crystallization of the precursor phase

- **Dominant Crystalline Phases**
 <80 C - <1M OH: zeolite A, sodalite
 >80 C - <1M OH: sodalite, cancrinite
 >80 C - >1M OH: cancrinite, sodalite
Summary

✓ Provide sound scientific knowledge for processing schemes to avoid and/or inhibit formation and growth of Al-Si phases

✓ Knowledge of aluminosilicate chemistry critical to glass waste minimization

✓ Develop insights into industrial fouling problems

✓ Gather data on geochemistry of two most abundant and ubiquitous elements (Al and Si) in earth’s crust

√ Formation and solubilities of aluminosilicates

\[\text{Al: } 0.01 - 0.2 \text{ M, Si: } 0.04 - 0.2 \text{ M, OH: } 6.0 - 10.0 \text{ M, } \]
\[\text{NaNO}_3 \text{ 5.0 M, Temperature 40 - 175}^0 \text{ C} \]

√ Gibbsite/Boehmite/Dawsonite Transformation

\[\text{NaOH: } 1.0 - 6.0 \text{ M, NaNO}_3 \text{ 1.0 - 6.0 M, NaNO}_2 \text{: } 1.0 - 3.0\text{M} \]
\[\text{Temperature 75 - 200}^0 \text{ C} \]

√ Formation of Uranium silicates phases with NAS

✓ Role of organics in inhibiting precipitation and scale formation

1. Low-chain polyols to stabilize aluminosilicate particles.
2. Polyelectrolytes and diblock copolymers to prevent nucleation and particle growth

✓ Thermodynamic Modeling

1. 27Al and 29Si NMR – determine speciation of Al and Si under relevant conditions for use in Pitzer model development
2. Model U(VI) solution chemistry in high ionic strength solutions
Approach

✓ NMR (27Al, 29Si, and 23Na) – structures of soluble and insoluble species.

✓ SAXS – size and structure of precipitates.

✓ TEM, ED, SEM, EDA – morphology, structure and composition.

✓ XRD – identify and quantify precipitated and transformed species.
Integration

- Complete characterization of precipitates
- Solution phase characterization
- Tank and Process Relevant conditions
- Phase Equilibrium Studies
- Role of Organics

Guidelines for preprocessing schemes