SCOPING STUDIES TO DEVELOP A METHOD TO DETERMINE PARTICLE SIZE IN SIMULANT SLUDGE SLURRIES BY SIEVING

PDF Version Also Available for Download.

Description

A physical separation method (i.e. sieving) was investigated to determine particle size distribution in non-radioactive sludge slurry simulants with the goal of implementation into the SRNL (Savannah River National Laboratory) shielded cells for use with radioactive sludge slurries. The investigation included obtaining the necessary experimental equipment, developing accessory equipment for use with the sieve shaker (to be able to sieve simulant slurries with aqueous solutions), sieving three different simulant slurries through a number of sieves and determining the particle size distribution gravimetrically, and developing a sufficient cleaning protocol of the sieves for re-use. The experimental protocol involved successive sieving of ... continued below

Physical Description

vp.

Creation Information

DAMON, CLICK February 7, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A physical separation method (i.e. sieving) was investigated to determine particle size distribution in non-radioactive sludge slurry simulants with the goal of implementation into the SRNL (Savannah River National Laboratory) shielded cells for use with radioactive sludge slurries. The investigation included obtaining the necessary experimental equipment, developing accessory equipment for use with the sieve shaker (to be able to sieve simulant slurries with aqueous solutions), sieving three different simulant slurries through a number of sieves and determining the particle size distribution gravimetrically, and developing a sufficient cleaning protocol of the sieves for re-use. The experimental protocol involved successive sieving of a NIST standard (to check the particle size retention of the sieves) and three non-radioactive slurry simulants (Batch 3 Tank 40 Test 3, Tank 40 Drum 3 and CETL Sludge Batch 2, which had been previously characterized by Microtrac analysis) through smaller and smaller sieves (150 microns x 5 microns) via use of the wet sieving system or by hand. For each of the three slurries, duplicate experiments were carried out using filtered supernate and DI water (to check the accuracy of the method versus Microtrac data) to sieve the slurry. Particle size determinations using the wet sieving system with DI water agree well with Microtrac data on a volume basis and in some cases the sieving data may be more accurate particularly if the material sieved had large particles. A correction factor had to be applied to data obtained from experiments done with supernate due to the dissolved solids which dried upon the sieves in the drying stage of the experiments. Upon subtraction of the correction factors, the experimental results were very similar to those obtained with DI water. It should be noted that approximately 250 mL of each of three simulant slurries was necessary to have enough filtered supernate available to carry out the experiments. The experimental results for the slurries are below with Microtrac data. The design of the experimental equipment was sufficient initially, but some pieces of the equipment began failing over time due to the caustic nature of the supernate and the vibrations from the sieve shaker. It is therefore recommended that upgrades to the experimental equipment be done before implementation into the SRNL shielded cells. Theses upgrades include using manipulator friendly connections, changing brass parts for stainless steel parts, using Teflon rather than polycarbonate, and possibly a change of pumps used to re-circulate the sieving fluid.

Physical Description

vp.

Source

  • Other Information: PBD: 7 Feb 2005

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: WSRC-TR-2005-00077
  • Grant Number: AC09-96SR18500
  • DOI: 10.2172/840794 | External Link
  • Office of Scientific & Technical Information Report Number: 840794
  • Archival Resource Key: ark:/67531/metadc783190

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 7, 2005

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • May 5, 2016, 6:09 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

DAMON, CLICK. SCOPING STUDIES TO DEVELOP A METHOD TO DETERMINE PARTICLE SIZE IN SIMULANT SLUDGE SLURRIES BY SIEVING, report, February 7, 2005; South Carolina. (digital.library.unt.edu/ark:/67531/metadc783190/: accessed November 12, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.