Fixation Mechanisms and Desorption Rates of Sorbed Cs in High-Level Waste Contaminated Subsurface Sediments: Implications to Future Behavior and In-Ground Stability

PDF Version Also Available for Download.

Description

The high-yield fission product 137Cs is a major contaminant of the vadose zone at Hanford and other DOE sites. Over 100 kCi of 137Cs was discharged to the vadose zone in the S-SX tank farm at Hanford through the leakage of high-level waste from tanks SX-108 and SX-109. Although 137Cs is strongly sorbed by subsurface sediments, certain waste characteristics, such as high Na+, can expedite its migration and reduce its retardation to low values. This project is focused on defining the in-ground geochemistry of sorbed 137Cs released from high-level waste tanks, so that better future projections can be made of ... continued below

Physical Description

vp.

Creation Information

Zachara, John M.; McKinley, James P.; Ainsworth, Calvin C. & Serne, R. Jeff June 1, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The high-yield fission product 137Cs is a major contaminant of the vadose zone at Hanford and other DOE sites. Over 100 kCi of 137Cs was discharged to the vadose zone in the S-SX tank farm at Hanford through the leakage of high-level waste from tanks SX-108 and SX-109. Although 137Cs is strongly sorbed by subsurface sediments, certain waste characteristics, such as high Na+, can expedite its migration and reduce its retardation to low values. This project is focused on defining the in-ground geochemistry of sorbed 137Cs released from high-level waste tanks, so that better future projections can be made of Cs mobility in the vadose zone. The project will study Cs-contaminated subsurface sediments from various Hanford tank farms to (1) determine the mineralogic and surface site residence of sorbed Cs in contaminated sediments varying in current Cs content and original waste composition, (2) establish geochemical factors and processes controlling Cs desorbability and desorption kinetics from contaminated sediment and Cs-enriched sediment particles, and (3) define and parameterize a kinetic model for Cs desorption that incorporates multi-site behavior and heterogeneous intraparticle Cs distribution.

Physical Description

vp.

Source

  • Other Information: PBD: 1 Jun 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-73758--2001
  • DOI: 10.2172/833767 | External Link
  • Office of Scientific & Technical Information Report Number: 833767
  • Archival Resource Key: ark:/67531/metadc783162

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2001

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 1:58 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zachara, John M.; McKinley, James P.; Ainsworth, Calvin C. & Serne, R. Jeff. Fixation Mechanisms and Desorption Rates of Sorbed Cs in High-Level Waste Contaminated Subsurface Sediments: Implications to Future Behavior and In-Ground Stability, report, June 1, 2001; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc783162/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.