Composition of Insoluble Residues Generated During Spent Fuel Dissolution

PDF Version Also Available for Download.

Description

One type of HLW associated with the procedures of spent fuel reprocessing or conditioning as would be required in order to implement accelerator driven transmutation of waste, is the insoluble residue, which remains after the majority of the fuel, is dissolved. This material is separated as part of the head-end processing and must be suitably encapsulated within a waste-form to permit its disposal. In spite of the fact that the specific contribution of insoluble deposits, arising from SNF dissolution does not exceed 0,5-1 % of the general volume of wastes, the radionuclides, contained in them introduce a rather significant hazard ... continued below

Physical Description

7 pages

Creation Information

Pokhitonov, Y.; Aleksandruk, V.; Bibichev, B.; Novikov, G.; Riazantsev, V.; Saprykin, V. et al. February 27, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

One type of HLW associated with the procedures of spent fuel reprocessing or conditioning as would be required in order to implement accelerator driven transmutation of waste, is the insoluble residue, which remains after the majority of the fuel, is dissolved. This material is separated as part of the head-end processing and must be suitably encapsulated within a waste-form to permit its disposal. In spite of the fact that the specific contribution of insoluble deposits, arising from SNF dissolution does not exceed 0,5-1 % of the general volume of wastes, the radionuclides, contained in them introduce a rather significant hazard and demand the most careful treatment of the material during its treatment and subsequent disposal. The main contributors to the insoluble residues are the slowly dissolving metallic fission product inclusions found in spent fuel and the certain fission products which although initially soluble precipitate during the dissolution process. The most significant elements, in mass terms are the platinum group metals (PGM) and, also molybdenum and zirconium. In turn, the formed deposits are capable of adsorbing fission products and actinides, for example, antimony, uranium and plutonium. This group of elements presents two issues one relating to the activity and heat of the relatively short-lived isotopes, in particular {sup 106}Ru/{sup 106}Rh and {sup 125}Sb and the other due to the presence of the long-lived and potentially environmentally mobile {sup 99}Tc. The main factors determining the amount and composition of insoluble residues are the temperature and degree of burnup and conditions of fuel dissolution. In this paper the results on composition and mass determination of insoluble residues (primary and secondary), derived from samples of fuel with burnup from 15 up to 54 MWd/kgU are given. Dissolution of spent fuel samples was conducted at the boiling temperature and at 80 C. The concentration of nitric acid in the final solutions varied within the limits 1,7-3,5 mole/l and concentration of uranium from 250 to 350 g/l. The mass of insoluble residues obtained during experiments was from 0,03 to 0,5% (calculated for 1 kg of UO{sub 2} in spent fuel). Secondary residue examination has shown that their amounts were from 0,01 to 0,3% of fuel mass (from {approx} 5 to 50% of whole residue mass). The results of chemical analysis of primary and secondary residues and specific {beta}- and {alpha}-activities will be presented. The main elements, defining residue composition are as follows: metals of platinum group (palladium, ruthenium, rhodium), molybdenum and zirconium. The specific {beta}-activity of the residues was 20 to {approx} 840 Ci/kg and {alpha}-activity 0,01-8 Ci/kg. Depending on dissolution conditions uranium and plutonium contents in specimens analyzed were as much as 0,2-4% and 0,1-3% respectively. These results are compared with other literature data for residue arising and the significance of the insoluble residues in the context of long-term waste behavior will be discussed.

Physical Description

7 pages

Source

  • Waste Management 2002 Symposium, Tucson, AZ (US), 02/24/2002--02/28/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: none
  • Office of Scientific & Technical Information Report Number: 828959
  • Archival Resource Key: ark:/67531/metadc783127

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 27, 2002

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 26, 2016, 6:50 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Pokhitonov, Y.; Aleksandruk, V.; Bibichev, B.; Novikov, G.; Riazantsev, V.; Saprykin, V. et al. Composition of Insoluble Residues Generated During Spent Fuel Dissolution, article, February 27, 2002; Tucson, Arizona. (digital.library.unt.edu/ark:/67531/metadc783127/: accessed November 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.