Thin Films and the Systems-Driven Approach

K. Zweibel

Presented at the 2004 DOE Solar Energy Technologies Program Review Meeting
October 25-28, 2004
Denver, Colorado
Thin Films and the Systems-Driven Approach

K. Zweibel
National Renewable Energy Laboratory (NREL)
1617 Cole Blvd., Golden, CO 80401
ken_zweibel@nrel.gov

ABSTRACT

A systems-driven approach is used to discern tradeoffs between cost and efficiency improvements for various thin-film module technologies and designs. Prospects for reduced system cost via such strategies are enhanced as balance-of-systems costs decline, and some strategies are identified for greater research focus.

1. Objectives

We apply the systems-driven approach (SDA) to thin films to 1) demonstrate that SDA can make a positive contribution to our understanding of research priorities and 2) investigate some key issues in thin-film research.

2. Technical Approach

The technical approach is to perform a bottoms-up analysis of thin-film module technologies using 1) known materials costs, 2) published materials and equipment data, 3) information provided by sources in private companies, and 4) educated guesses. First, process steps for various thin-film technologies were defined. Information was then gathered to assemble a costs spreadsheet. In some cases, overlapping costs for substrates, superstrates, adhesives, wires, front and back contacts, mounting, and other shared components were used to minimize variation across technologies. Where needed, future cost reductions were estimated using one of two approaches: an 80% learning curve, based on projected growth in production volumes; or research-based improvements. The resulting data were assembled and analyzed. We tried to avoid comparisons that required refined data because such data were unavailable and may never be available. Thus, we attempted to make the conclusions robust, despite the nature of the input data.

3. Results and Accomplishments

Using the data for the various thin films, one can gain some insight into the current state of thin-film manufacturing costs. These are shown graphically in Fig. 1, which shows two curves: the top and bottom curves represent high- and low-cost assumptions, respectively. Neither curve is meant to represent specific technologies; they are the result of using ranges of materials, capital, energy input, labor, maintenance, and cost assumptions. However, we would expect that almost all currently manufactured thin-film modules would have a cost within or close to this envelope.

Figure 2 shows calculated potential extremes of cost for thin films, with everything either at the highest cost end or lowest possibility. Specifically, the lower cost curve represents where everything is optimized: the cost of the semiconductor materials requires near 100% utilization rates and ultra-thin layers; their deposition is done inexpensively and with little energy input; the substrates are made using low-cost material like plastic, with minimal but inexpensive adhesive layers (with no certainty whether such encapsulation could ever be adequately reliable). And assumptions about volume production allowed using economies of scale such as those discussed in [1]. This is meant as a “stretch” estimate of thin-film potential.

To see more clearly some of the elements that go into these cost variations, we performed the following thought experiment: Start with a baseline thin film and subtract the cost saved if the semiconductor process could be optimized, i.e., if its capital and maintenance cost, energy input, material use and labor were minimal. As a second case, assume that its packaging costs could be minimized, instead, with low-cost plastics replacing glass or steel, and with low-cost adhesive replacing EVA (and other cost reductions, as
The following figures compare four cases: baseline thin film, lower-cost semiconductor deposition, lower-cost packaging, and both packaging and semiconductor costs reduced. In addition, the comparisons are done for two scenarios: near-term, using approximations of today’s balance-of-systems (BOS) costs; and long-term, assuming much reduced BOS costs. Why? Because reduced module costs can have a greater impact if reductions are a larger fraction of total cost, and longer-term projections can elucidate this. The comparisons must also be made at the system level (not module cost itself) because this is where the tradeoffs in cost and efficiency can be seen. Table 1 shows the assumed values used as input.

Table 1. Assumptions used for comparison of different cost reductions (in $/m²)

<table>
<thead>
<tr>
<th></th>
<th>Baseline module</th>
<th>Lower semi</th>
<th>Lower packaging</th>
<th>Lower all</th>
<th>Area BOS</th>
<th>Power BOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near-term</td>
<td>90</td>
<td>70</td>
<td>74</td>
<td>54</td>
<td>80</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$/Wₚ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>Long-term</td>
<td>40</td>
<td>34</td>
<td>29</td>
<td>23</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3 shows the results based on the near-term assumptions. The cost reductions have a minimal effect. Either reduced packaging or reduced semiconductor costs alone are worth about a 1% module-efficiency difference. Together, a near-perfect thin film (in terms of cost reduction) versus a baseline thin film would only be worth about 2% in module-efficiency difference. This means that with today’s BOS costs, efficiency is so dominant that most radical changes in module design (which might lower efficiency) would not likely pay off.

Figure 4 shows a somewhat different picture based on much lower BOS cost assumptions from Table 1. At the very lowest cost extremes, say at a system cost of $0.6/Wₚ, the allowable difference between the least expensive thin-film design (all savings) and the baseline design is 4%; in other words, a 12% module made with least-cost semiconductor deposition and packaging has the same value at the system level as a 16% baseline module (itself improved in costs from the one in Fig. 3). The lower packaging cost reduction is worth almost twice as much as the lower-cost semiconductor fabrication, mostly because semiconductor costs are also assumed to improve in the baseline thin film. At higher-cost system levels, the differences are smaller. Over time, strategies that may cost some efficiency debit may still pay off if they result in aggressive module cost reductions. To reiterate, this is because at lower BOS costs, the module cost savings are a larger fraction of total system cost, with a larger impact.

Figure 4. A long-term comparison shows that with much lower BOS assumptions, radical cost reductions can pay off in tangible reductions in allowable module efficiency while maintaining equal system value.

The results provide some guidance about the value of cost reduction strategies, including radical approaches such as substituting low-cost plastics for glass, or using non-vacuum equipment with lower-efficiency cells to make semiconductors. It does not say whether such strategies are practical; in fact, they may not be, given reliability and efficiency challenges.

4. Conclusions

Using less-than-robust input data (characteristic of the problem of studying technology options that are changing rapidly), it is still possible to make rough comparisons and suggest favorable routes for improvement. Reduced semiconductor costs (capital, maintenance, energy input, materials amounts, labor) and reduced packaging costs are attractive measures. Finer detail must be developed to bring these insights to bear on specific technologies.

ACKNOWLEDGEMENTS

This work was supported under DOE Contract DE-AC36-99GO10337. The author acknowledges Ray Sutula of DOE for alerting him to the value of SDA.

REFERENCES

REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. **REPORT DATE** (DD-MM-YYYY)
 January 2005

2. **REPORT TYPE**
 Conference Paper

3. **DATES COVERED** (From - To)

4. **TITLE AND SUBTITLE**
 Thin Films and the Systems-Driven Approach

5a. **CONTRACT NUMBER**
 DE-AC36-99-G010337

5b. **GRANT NUMBER**

5c. **PROGRAM ELEMENT NUMBER**

5d. **PROJECT NUMBER**
 NREL/CP-520-36968

5e. **TASK NUMBER**
 PVP55101

5f. **WORK UNIT NUMBER**

6. **AUTHOR(S)**
 K. Zweibel

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 National Renewable Energy Laboratory
 1617 Cole Blvd.
 Golden, CO 80401-3393

8. **PERFORMING ORGANIZATION REPORT NUMBER**
 NREL/CP-520-36968

9. **SPONSOR/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**

10. **SPONSOR/MONITOR’S ACRONYM(S)**
 NREL

11. **SPONSORING/MONITORING AGENCY REPORT NUMBER**

12. **DISTRIBUTION AVAILABILITY STATEMENT**
 National Technical Information Service
 U.S. Department of Commerce
 5285 Port Royal Road
 Springfield, VA 22161

13. **SUPPLEMENTARY NOTES**

14. **ABSTRACT** (Maximum 200 Words)
 A systems-driven approach is used to discern tradeoffs between cost and efficiency improvements for various thin-film module technologies and designs. Prospects for reduced system cost via such strategies are enhanced as balance-of-systems costs decline, and some strategies are identified for greater research focus.

15. **SUBJECT TERMS**
 PV; systems-driven approach (SDA); balance-of-systems (BOS); module; substrates; superstrates; adhesives; wires; front and back contacts; mounting

16. **SECURITY CLASSIFICATION OF:**
 a. **REPORT**
 Unclassified
 b. **ABSTRACT**
 Unclassified
 c. **THIS PAGE**
 Unclassified

17. **LIMITATION OF ABSTRACT**
 UL

18. **NUMBER OF PAGES**

19a. **NAME OF RESPONSIBLE PERSON**

19b. **TELEPHONE NUMBER** (Include area code)

Abstract

A systems-driven approach is used to discern tradeoffs between cost and efficiency improvements for various thin-film module technologies and designs. Prospects for reduced system cost via such strategies are enhanced as balance-of-systems costs decline, and some strategies are identified for greater research focus.