Bounding Peak Ground Velocities for Seismic Events at Yucca Mountain, Nevada

PDF Version Also Available for Download.

Description

Earthquake ground motions have been assessed using a probabilistic seismic hazard analysis (PSHA) of the proposed repository for spent nuclear fuel and high-level radioactive wastes at Yucca Mountain, Nevada. To meet the applicable regulations, consideration must be given to ground motions that have probabilities of exceedance as low as 10{sup -8}/yr. In the PSHA, aleatory variability in ground motion attenuation relations is characterized by unbounded lognormal distributions. At extremely low annual probability levels, the tails of these distributions, along with large assessed epistemic uncertainties in ground motions from large, close earthquakes, result in upper-percentile and mean ground motions that are ... continued below

Physical Description

1 pages

Creation Information

King, J.; Coppersmith, K. & Quittmeyer, R. July 13, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Earthquake ground motions have been assessed using a probabilistic seismic hazard analysis (PSHA) of the proposed repository for spent nuclear fuel and high-level radioactive wastes at Yucca Mountain, Nevada. To meet the applicable regulations, consideration must be given to ground motions that have probabilities of exceedance as low as 10{sup -8}/yr. In the PSHA, aleatory variability in ground motion attenuation relations is characterized by unbounded lognormal distributions. At extremely low annual probability levels, the tails of these distributions, along with large assessed epistemic uncertainties in ground motions from large, close earthquakes, result in upper-percentile and mean ground motions that are extremely high and probably unphysical. To address this issue, we evaluated site-specific geologic evidence with respect to an upper bound on peak ground velocity (PGV), the ground motion measure that is correlated with damage to underground repository systems. Ground-motion amplitudes are limited by the strength of the materials through which they propagate. At high enough levels of seismic shaking, the rocks at the waste-emplacement level, particularly the lithophysal tuffs, will fracture and fail. A key finding of geologic relations from underground explorations and rock-mechanics modeling is the absence of mechanical damage of the type expected from seismic shaking in the 12.8 my old volcanic rocks at the waste-emplacement level (Buesch and Damjanac, this session). Rock mechanics tests and computer modeling provide estimates of the shear strains required to fail the lithophysal rock. In turn, a site-response model is used to calculate PGVs that would cause these shear strains at repository depths. The threshold shear strains required to cause significant damage are estimated to range from 0.09 to 0.35%. This translates to site-specific average PGV values ranging from about 153 to 451 cm/sec. Considering that ground motions of this amplitude are not evidenced in the 12.8 my old lithophysal tuffs, and considering corroborating estimates of the conditional probabilities of ground motions from earthquakes with recurrence rates of 10{sup -5}/yr, we conclude that this range of PGVs represents a reasonable upper bound on PGVs that need to be considered in Yucca Mountain performance assessments.

Physical Description

1 pages

Notes

INIS; OSTI as DE00837703

Source

  • Other Information: PBD: 13 Jul 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: NONE
  • DOI: 10.2172/837703 | External Link
  • Office of Scientific & Technical Information Report Number: 837703
  • Archival Resource Key: ark:/67531/metadc783028

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 13, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • March 24, 2016, 5:47 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

Citations, Rights, Re-Use

King, J.; Coppersmith, K. & Quittmeyer, R. Bounding Peak Ground Velocities for Seismic Events at Yucca Mountain, Nevada, report, July 13, 2004; Las Vegas, Nevada. (digital.library.unt.edu/ark:/67531/metadc783028/: accessed October 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.