A NEW RUSSIAN WASTE MANAGEMENT INSTALLATION

PDF Version Also Available for Download.

Description

The Polyarninsky Shipyard (sometimes called Navy Yard No. 10 or the Shkval Shipyard) has been designated as the recipient for Solid Radioactive Waste (SRW) management facilities under the Arctic Military Environmental Cooperation (AMEC) Program. The existing SRW storage site at this shipyard is filled to capacity, which is forcing the shipyard to reduce its submarine dismantlement activities. The Polyarninsky Shipyard Waste Management Installation is planned as a combination of several AMEC projects. It will have several elements, including a set of hydraulic metal cutting tools, containers for transport and storage, the Mobile Pretreatment Facility (MPF) for Solid Radioactive Waste, the ... continued below

Physical Description

14 pages

Creation Information

Griffith, Andrew; Engxy, Thor; Endregard, Monica; Schwab, Patrick; Nazarian, Ashot; Krumrine, Paul et al. February 27, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Polyarninsky Shipyard (sometimes called Navy Yard No. 10 or the Shkval Shipyard) has been designated as the recipient for Solid Radioactive Waste (SRW) management facilities under the Arctic Military Environmental Cooperation (AMEC) Program. The existing SRW storage site at this shipyard is filled to capacity, which is forcing the shipyard to reduce its submarine dismantlement activities. The Polyarninsky Shipyard Waste Management Installation is planned as a combination of several AMEC projects. It will have several elements, including a set of hydraulic metal cutting tools, containers for transport and storage, the Mobile Pretreatment Facility (MPF) for Solid Radioactive Waste, the PICASSO system for radiation monitoring, and a Waste Storage Facility. Hydraulically operated cutting tools can cut many metal items via shearing so that dusts or particulates are not generated. The AMEC Program procured a cutting tool system, consisting of a motor and hydraulic pumping unit, a 38-mm conduit-cutting tool, a 100- mm pipe-cutting tool, and a spreading tool all mounted on a wheeled cart. The vendor modified the tool system for extremely cold conditions and Russian electrical standards, then delivered the tool system to the Polyarninsky shipyard. A new container for transportation and storage of SRW and been designed and fabricated. The first 400 of these containers have been delivered to the Northern Fleet of the Russian Navy for use at the Polyarninsky Shipyard Waste Management Installation. These containers are cylindrical in shape and can hold seven standard 200-liter drums. They are the first containers ever certified in Russia for the offsite transport of military SRW. These containers can be transported by truck, rail, barge, or ship. The MPF will be the focal point of the Polyarninsky Shipyard Waste Management Installation and a key element in meeting the nuclear submarine dismantlement and waste processing needs of the Russian Federation. It will receive raw waste in various conditions, treat it, package it in standard 200-liter drums, and load these drums into the new transportation and storage containers. The MPF has been designed, fabricated, and assembled at the fabrication site, the Zvezdochka Shipyard. It passed a demonstration test in September 2002. The entire MPF has been disassembled into its transportable modules, which are currently stored at the Zvezdochka Shipyard. In the spring of 2003, the MPF modules will be transported to the Polyarninsky Shipyard, where they will be reassembled and the facility will be cold tested. The site preparation work is already under way for the installation at the Polyarninsky Shipyard. An automatic radiation monitoring system, PICASSO-AMEC, has been developed and will be installed at Polyarninsky Shipyard as one of the elements of the installation. The radiation monitoring system is based on the software package PICASSO-3, developed by the Institute for Energy Technology in Norway. Treated waste f rom the MPF will require safe and secure storage. The Waste Storage Facility will be connected to the MPF, and it will be large enough to store all 400 of the new containers. Incoming waste boxes in overpacks will enter one part of the storage facility on trucks. Then they will be inspected and transferred into the MPF through the receiving area. Drums of processed waste in containers will be removed from the MPF and stacked in another part of the storage facility via a bridge crane. This facility will be designed and construction will begin during the winter of 2002/2003.

Physical Description

14 pages

Source

  • Waste Management 2003 Symposium, Tucson, AZ (US), 02/23/2003--02/27/2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: NONE
  • Office of Scientific & Technical Information Report Number: 825674
  • Archival Resource Key: ark:/67531/metadc782957

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 27, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Aug. 2, 2016, 5:42 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Griffith, Andrew; Engxy, Thor; Endregard, Monica; Schwab, Patrick; Nazarian, Ashot; Krumrine, Paul et al. A NEW RUSSIAN WASTE MANAGEMENT INSTALLATION, article, February 27, 2003; (digital.library.unt.edu/ark:/67531/metadc782957/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.