SRD tested a number of different length cavities during this past quarter. Continuous transmission was observed with cavity lengths from 65 to 12 cm. The 65 cm cavity was replaced with a 39 cm cavity for work performed during this quarter. Flue gas components were tested for background absorptions and any interference with the determination of accurate mercury concentrations. Sulfur dioxide was found to absorb fairly strongly in the region of the mercury transition, but the Cavity Ring-Down (CRD) instrument was still able to detect mercury at subparts-per-billion by volume (ppb) levels. Additional flue gases tested included H{sub 2}O, CO, …
continued below
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this report.
Follow the links below to find similar items on the Digital Library.
Description
SRD tested a number of different length cavities during this past quarter. Continuous transmission was observed with cavity lengths from 65 to 12 cm. The 65 cm cavity was replaced with a 39 cm cavity for work performed during this quarter. Flue gas components were tested for background absorptions and any interference with the determination of accurate mercury concentrations. Sulfur dioxide was found to absorb fairly strongly in the region of the mercury transition, but the Cavity Ring-Down (CRD) instrument was still able to detect mercury at subparts-per-billion by volume (ppb) levels. Additional flue gases tested included H{sub 2}O, CO, CO{sub 2}, NO, NO{sub 2}. None of these flue gas constituents showed any observable absorption in the ultraviolet region near the atomic mercury transition. Work was also initiated in speciation studies. In particular mercury chloride (HgCl{sub 2}) was tested. A mercury signal was detected from a gas stream containing HgCl{sub 2}. SRD was not able to determine definitively if there exists a spectral shift great enough to separate HgCl{sub 2} from elemental mercury in these initial tests.
This report is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Carter, Christopher C.A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR,
report,
December 31, 2002;
United States.
(https://digital.library.unt.edu/ark:/67531/metadc782939/:
accessed March 21, 2025),
University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.