
High-Precision Floating-Point Arithmetic

in Scientific Computation

David H. Bailey

28 January 2005

Abstract
At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for

most scientific applications. However, for a rapidly growing body of important scientific
computing applications, a higher level of numeric precision is required: some of these appli-
cations require roughly twice this level; others require four times; while still others require
hundreds or more digits to obtain numerically meaningful results. Such calculations have
been facilitated by new high-precision software packages that include high-level language
translation modules to minimize the conversion effort. These activities have yielded a
number of interesting new scientific results in fields as diverse as quantum theory, climate
modeling and experimental mathematics, a few of which are described in this article.
Such developments suggest that in the future, the numeric precision used for a scientific
computation may be as important to the program design as are the algorithms and data
structures.

Keywords: high-precision arithmetic, experimental mathematics, climate modeling, quan-
tum theory, computational chemistry, computational physics

Acknowledgement:
This work was supported by the Director, Office of Computational and Technology

Research, Division of Mathematical, Information, and Computational Sciences of the U.S.
Department of Energy, under contract number DE-AC03-76SF00098.

1

1. Introduction
Virtually all present-day computer systems, from personal computers to the largest

supercomputers, implement the IEEE 64-bit floating-point arithmetic standard, which
provides 53 mantissa bits, or approximately 16 decimal digit accuracy. For most scientific
applications, this is more than sufficient, and for some applications, such as routine pro-
cessing of experimental data, even the 32-bit standard often provides sufficient accuracy.

However, for a rapidly expanding body of applications, 64-bit IEEE arithmetic is no
longer sufficient. These range from some interesting new mathematical computations to
large-scale physical simulations performed on highly parallel supercomputers. In these ap-
plications, portions of the code typically involve numerically sensitive calculations, which
produce results of questionable accuracy using conventional arithmetic. These inaccurate
results may in turn induce other errors, such as taking the wrong path in a conditional
branch.

Some difficulties of this type may be remedied by changing the underlying algorithms
or changing the order in which certain operations are performed. But in other cases,
such fixes are not effective, and significantly higher numeric precision is required from the
start. For some of these problems, twice the normal level, or roughly 32-digit accuracy,
is sufficient. In other cases, four times the normal level is required, or roughly 64-digit
accuracy. In still other cases, including applications from physics and mathematics, a
much higher precision level is required, ranging from hundreds to thousands of digits.

It is important to keep in mind here that very few of the scientists and engineers who
are currently involved in technical computing have rigorous backgrounds in numerical
analysis. What’s more, this scarcity of numerical expertise is likely to worsen, not improve,
in the future, in part because of the dearth of students and young researchers who are
interested in numerical mathematics [22]. Thus, while some may argue that numerically
sensitive calculations can be remedied by using different algorithms or coding techniques,
in practice such changes are highly prone to error and very expensive in human cost.
In other words, it is usually easier, cheaper and more reliable to employ high-precision
arithmetic to overcome these difficulties, even if other remedies are theoretically feasible.

This article will focus on high-precision floating-point rather than integer arithmetic.
It should be noted, however, that high-precision (i.e., multi-word) integer arithmetic is a
very interesting arena all by itself, with numerous applications in both pure and applied
mathematics. For example, when one logs into a secure website to purchase a book or
computer accessory, at some point the browser software is performing high-precision in-
teger computations to communicate credit card numbers and other secure information.
Closely related to this technology is ongoing research in large integer factorization al-
gorithms, in which several remarkable advances have recently been made. An excellent
reference here is the recently published book by Crandall and Pomerance [17]. Mathe-
matica implementations of the algorithms described in the Crandall-Pomerance book can
be obtained from http://www.perfsci.com/software.htm.

2

2. High-Precision Software
Software packages that perform high-precision floating-point arithmetic have been

available since the early days of computing. For example, a package written by Richard
Brent has been in use since the 1970s [14]. However, many of these packages require
one to rewrite a scientific application with individual subroutine calls for each arithmetic
operation. The difficulty of making such changes, and the difficulty of debugging the
resulting code, has deterred all but a few scientists from using such software. In the
past few years, high-precision software packages have been produced that include high-
level language interfaces, making such conversions relatively painless. These packages
typically utilize custom datatypes and operator overload features, which are now available
in languages such as C++ and Fortran-90, to facilitate conversion.

Even more advanced high-precision computation facilities are available in the com-
mercial products Mathematica and Maple. These products incorporate arbitrary-precision
arithmetic in a very natural way, extending to a wide range of the advanced functions
that arise in pure and applied mathematics. These packages are very useful in some con-
texts, but they are generally not as fast as specialized high-precision arithmetic packages,
and they do not provide a means to convert existing scientific programs, written say in
Fortran-90 or C++, to utilize their high-precision arithmetic facilities.

Some examples of high-precision arithmetic software packages that are freely available
on the Internet are the following, listed in alphabetical order. The ARPREC, DDFUN,
QD and MPFUN90 packages are available from the author’s website:
http://crd.lbl.gov/~dhbailey/mpdist or from http://www.expmath.info.

• ARPREC. This package includes routines to perform arithmetic with an arbitrarily
high (but pre-set) level of precision, including many algebraic and transcendental
functions. High-level language interfaces are available for C++ and Fortran-90,
supporting real, integer and complex datatypes. This software was written by the
author, Xiaoye S. Li and Brandon Thompson.

• DDFUN. This packages provide double-double (approx. 31 digits) arithmetic, in an
all-Fortran-90 environment. A high-level language interface supports real, integer
and complex datatypes. This package is much faster than using arbitrary precision
or quad-double software in applications where 31 digits is sufficient, and often faster
than using the real*16 datatype available in some Fortran systems.

• FMLIB and FMZM90. FMLIB is a low-level multiple-precision library, and FMZM90
provides high-level Fortran-90 language interfaces for real, integer and complex
datatypes. This software was written by David M. Smith of Loyola Marymount
University, and is available at http://myweb.lmu.edu/dmsmith/FMLIB.html.

• GMP. This package includes an extensive library of routines to support high-precision
integer, rational and floating-point calculations. GMP has been produced by a vol-
unteer effort and is distributed under the GNU license by the Free Software Foun-
dation, and is available at http://www.swox.com/gmp.

3

• Predicates. This is a high-precision package specifically designed for performing the
numerically sensitive operations that often arise in computational geometry. This
software was written by Jonathan Shewchuk of U.C. Berkeley, and is available at
http://www-2.cs.cmu.edu/~quake/robust.html.

• QD. This package includes routines to perform “double-double” (approx. 31 digits)
and “quad-double” (approx. 62 digits) arithmetic. High-level language interfaces are
available for C++ and Fortran-90, supporting real, integer and complex datatypes.
The QD package is much faster than using arbitrary precision software in applica-
tions where 31 or 62 digits is sufficient. This software was written by the author,
Xiaoye S. Li and Yozo Hida.

• MPFR. The MPFR library is a C library for multiple-precision floating-point com-
putations with exact rounding, and is based on the GMP multiple-precision library.
Additional information is available at http://www.mpfr.org.

• MPFR++. This is a high-level C++ interface to MPFR. Additional information is
available at http://perso.ens-lyon.fr/nathalie.revol/software.html.

• MPFUN90. This is equivalent to ARPREC in user-level functionality, but is written
entirely in Fortran-90 and provides a Fortran-90 language interface.

• VPA. This package provides an arbitrary precision functionality together with a
Fortran language interface. The software was written by J.L. Schonfelder of N.A.
Software of the U.K., and is available at http://pcwww.liv.ac.uk/ jls/vpa20.htm.

Several of these packages includes sample application programs. For example, the
ARPREC and MPFUN90 packages include programs that implement the “PSLQ” algo-
rithm for integer relation detection (see Sections 10 and 11). The ARPREC, MPFUN90
and QD packages include programs to evaluate definite integrals to high precision. Along
this line, it is now possible to evaluate many integrals that arise in mathematics or physics
to very high accuracy, even in cases where the integrand functions have singularities such
as vertical derivatives or infinite values at endpoints. When these high-precision integra-
tion schemes are combined with integer relation detection methods, it is often possible
to obtain analytic evaluations of definite integrals that otherwise have no known solution
[9, 10].

Using high-precision software definitely increases computer run times, compared with
using conventional machine precision. For example, computations using the double-double
precision typically run five times longer than with ordinary 64-bit arithmetic. This fig-
ure rises to 25 times for the quad-double arithmetic, and to more than 50 times for
100-digit arithmetic. Beyond 100 digit-precision, the computational cost for precision p
increases roughly as p2 up to roughly 1000 digits, after which the cost increases as roughly
p log p (presuming one is using FFT-based multiplication, which is available for instance in
ARPREC and MPFUN90). Fortunately, it is often not necessary to employ high-precision

4

arithmetic for the entire calculation. Often just one critical loop is all that requires this
higher accuracy.

We will now describe some of the scientific applications that utilize high-precision
arithmetic.

3. Climate Modeling
It is well-known that weather or climate simulations are fundamentally chaotic—if

microscopic changes are made to the present state, within a certain period of simulated
time the future state is completely different. Indeed, ensembles of these calculations are
required to obtain statistical confidence in global climate trends produced from such cal-
culations. As a result, computational scientists involved in climate modeling applications
have long resigned themselves that their codes quickly diverge from any “baseline” cal-
culation, even if they only change the number of processors used to run the code. As a
result, it is not only difficult for researchers to compare results, but it is often problematic
even to determine whether they have correctly deployed their code on a given system.

Recently Helen He and Chris Ding, two researchers at LBNL, investigated this non-
reproducibility phenomenon in a widely-used climate modeling code. They found that
almost all of the numerical variation occurred in one inner product loop in the atmospheric
data assimilation step, and in a similar operation in a large conjugate gradient calculation.
He and Ding found that a straightforward solution was to employ double-double arithmetic
(using the DDFUN package above) for these loops. This single change dramatically
reduced the numerical variability of the entire application, permitting computer runs to
be compared for much longer run times than before. Details of their work can be read in
[21].

In retrospect, it is not clear that handling these sums in this manner is the best
solution—there may be other ways to preserve meaningful numerical accuracy, while at
the same time yielding reproducible results. Such phenomena deserve further study and
refinement and are being investigated. But in the meantime, He and Ding’s solution is a
straightforward and effective means of dealing with this problem.

4. Supernova Simulations
Recently Edward Baron, Peter Hauschildt, and Peter Nugent used the QD package,

which provides double-double (128-bit or 31-digit) and quad-double (256-bit or 62-digit)
datatypes, to solve for the non-local thermodynamic equilibrium populations of iron and
other atoms in the atmospheres of supernovae and other astrophysical objects [11, 20].
Iron for example may exist as Fe II in the outer parts of the atmosphere, but in the inner
parts Fe IV or Fe V could be dominant. Introducing artificial cutoffs leads to numerical
glitches, so it is necessary to solve for all of these populations simultaneously. Since the
relative population of any state from the dominant stage is proportional to the exponential
of the ionization energy, the dynamic range of these numerical values can be very large.

In order to handle this potentially very large dynamic range, yet at the same time
perform the computation in reasonable time, Baron, Hauschildt and Nugent employ a
dynamic scheme to determine whether to use 64-bit, 128-bit or 256-bit arithmetic in both

5

constructing the matrix elements and in solving the linear system. The run time of the
code that uses 256-bit arithmetic has emerged as a large fraction of the total run time,
so plans are being drawn up for an even faster version of the 256-bit routines to reduce
these run times.

We should note here that numerical difficulties in dealing with quantum calculations
of atomic species have been recognized for many years. Michael Strayer, now a senior
program manager at the U.S. Department of Energy, recalls utilizing a variable-length
precision facility in the IBM 604 for similar calculations back in the late 1960s [26].

5. Coulomb N-Body Atomic System Simulations
Numerous computations have been performed recently using high-precision arithmetic

to study atomic-level Coulomb systems. For example, Alexei Frolov of Queen’s University
in Ontario, Canada has used high-precision software to solve the generalized eigenvalue
problem (Ĥ −EŜ)C = 0, where the matrices Ĥ and Ŝ are large (typically 5, 000× 5, 000
in size) and very nearly degenerate. Until recently, progress in this arena was severely
hampered by the numerical difficulties induced by these nearly degenerate matrices.

Frolov has done his calculations using the MPFUN package, with a numeric precision
level exceeding 100 digits. Frolov notes that in this way “we can consider and solve the
bound state few-body problems which have been beyond our imagination even four years
ago.” He has also used MPFUN to compute the matrix elements of the Hamiltonian
matrix Ĥ and the overlap matrix Ŝ in four- and five-body atomic problems. Future plans
include generalizing this method for use in photodetachment and scattering problems.

As of this date, Frolov has written a total of 21 papers based on high-precision com-
putations. Two illustrative examples are [7] and [18].

6. Studies of the Fine Structure Constant of Physics
In the past few years, significant progress has been achieved in using high-precision

arithmetic to obtain highly accurate solutions to the Schrodinger equation for the lithium
atom. In particular, the nonrelativistic ground state energy has been calculated to an
accuracy of a few parts in a trillion, a factor of 1,500 improvement over the best previous
results. With these highly accurate wavefunctions, Zong-Chao Yan and others have been
able to test the relativistic and QED effects at the 50 parts per million (ppm) level and also
at the one ppm level [27]. Along this line, a number of properties of lithium and lithium-
like ions have also been calculated, including the oscillator strengths for certain resonant
transitions, isotope shifts in some states, dispersion coefficients and Casimir-Polder effects
between two lithium atoms.

Theoretical calculations of the fine structure splittings in helium atoms have now
advanced to the stage that highly accurate experiments are now planned. When some
additional computations are completed, a unique atomic physics value of the fine structure
constant may be obtained to an accuracy of 16 parts per billion [28].

7. Electromagnetic Scattering Theory
A key operation in computational studies of electromagnetic scattering is to find the

branch points of the asymptotic expansion of the spheroidal wave function. Newton-

6

Raphson iterations are typically used here. Unfortunately, the accuracy of the results
obtained using conventional 64-bit arithmetic for these Newton iterations significantly
limits the range of the wave functions that can be studied.

Recently Ben Barrowes used the MPFUN package to greatly extend the range of
wavefunctions that can be studied [12]. This calculation required the conversion of a
large body of existing code, which was facilitated by the Fortran-90 language translation
modules in the MPFUN package. However, in the course of this work, Barrowes found
that arbitrary-precision versions of the Fortran-90 array operations were required. He
then worked with the author to implement these array functions, which are now available
as an optional part of the MPFUN90 package.

8. Vortex Sheet Roll-Up Simulations
High-precision arithmetic has been exploited for some time in attempts to resolve

complex phenomena associated with fluid flows. For example, in 1993 Russel Caflisch
used 32, 64 and even 128-digit arithmetic in studies of singularity formation under three-
dimensional incompressible Euler flows [16].

A long-standing problem of fluid dynamics is whether a fluid undergoing vortex sheet
roll-up assumes a true power law spiral. Recently this question was investigated using
the QD and MPFUN90 packages. As mentioned in Section 2, the computational cost
is multiplied by a large factor by employing these packages. For this problem, the re-
sulting calculation, which is fairly long-running even with standard precision, becomes
prohibitively expensive on a single processor system with high-precision arithmetic. How-
ever, researchers (Robert Krasny, Richard Pelz and the author) were able to implement
the calculation on a highly parallel system, using 64 processors. The calculation ulti-
mately used 10,000 CPU-hours. The result of this calculation showed that when a critical
parameter is reduced below 0.02, the solution is no longer a smooth spiral, but instead
develops “blisters” (see Figure 1) that are not merely artifacts of insufficient precision.
At the present time, these “blisters” are not well understood, and further investigation in
under way [8].

9. Computational Geometry and Grid Generation
Grid generation, contour mapping and several other computational geometry applica-

tions crucially rely on highly accurate arithmetic. This is because small numerical errors
can lead to geometrically inconsistent results. Such difficulties are inherent in the mathe-
matics of the formulas commonly used in such calculations and cannot be easily remedied.
For example, William Kahan and Joseph Darcy have shown that small numerical errors
in the computation of the point nearest to a given point on a line of intersection of two
planes can result in the computed point being so far from either plane as to rule out the
solution being correct for a reasonable perturbation of the original problem [23].

Two commonly used computational geometry operations are the orientation test and
the incircle test. The orientation test attempts to unambiguously determine whether a
point lies to the left of, to the right of, or on a line or plane defined by other points.
In a similar way, an incircle test determines whether a point lies inside, outside, or on a

7

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.475 0.48 0.485 0.49 0.495 0.5 0.505 0.51 0.515 0.52 0.525

Figure 1: Vortex roll-up computed using quad-double arithmetic. The “blisters” are not
merely artifacts of insufficient precision.

8

circle defined by other points. Each of these tests is typically performed by evaluating the
sign of a determinant that is expressed in terms of the coordinates of the points. If these
coordinates are expressed as single or double precision floating-point numbers, roundoff
error may lead to an incorrect result when the true determinant is near zero. In turn,
this misinformation can lead an application to fail or produce incorrect results, as noted
above.

To remedy such problems, Jonathan Shewchuk has produced a software package that
performs “adaptive” floating-point arithmetic, which dynamically increases numeric preci-
sion until an unambiguous result is obtained. This software and some related information
on this type of application is publicly available—see “Predicates” in the software list given
in Section 2.

10. Computational Number Theory
One active field of current mathematical research, which has applications in fields

such as cryptography, is computational number theory. These computations frequently
involve high-precision arithmetic in general and high-precision floating-point arithmetic
in particular. For example, the current largest known explicit prime number, namely
224036583 − 1 (which has seven million decimal digits) number was recently proven prime
via the Lucas–Lehmer test. This test requires very large-integer arithmetic, which in
turn utilizes fast Fourier transforms (FFT) to perform multiplications, since these mul-
tiplications are merely large linear convolutions ([17]). As it turns out, the size of these
convolutions that can be done reliably is limited by the numerical accuracy of IEEE arith-
metic, unless one stores only a few words in each word of memory, thus wasting memory.
Thus fast double-double arithmetic, for instance, has a significant advantage in these
computations.

Many questions in mathematical number theory revolve around the celebrated Rie-
mann zeta function:

ζ(s) =
∞∑

k=1

1

ns
,

which among other things encodes profound information about the distribution of prime
numbers. For example, the best method currently known for evaluating the classical
function π(x), the number of primes not exceeding x, involves calculations of ζ(3/2 +
it). Along this line, Will Galway has observed that calculating zeta using IEEE 64-bit
arithmetic only permits one to accurately compute π(x) for x up to 1013 (see [17]). Thus,
there is considerable interest in utilizing higher-precision floating-point arithmetic, which
should permit researchers to press up toward the current frontier of knowledge namely
π(1022).

11. Experimental Mathematics
High-precision computations have proven to be an essential tool for the emerging dis-

cipline of experimental mathematics, namely the usage of modern computing technology
as an active agent of exploration in mathematical research [13][1]. One of the key tech-
niques used here is the PSLQ integer relation detection algorithm, which searches for

9

linear relationships satisfied by a set of numerical values [3]. Integer relation computa-
tions require very high precision in the input vector to obtain numerically meaningful
results. Computations with several hundred digits are typical, although in one extreme
instance, 50,000-digit arithmetic was required to obtain the desired result [4].

The best-known application of PSLQ in experimental mathematics is the 1995 discov-
ery, by computer, of what is now known as the “BBP” formula for π:

π =
∞∑

k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
.

This formula has the remarkable property that it permits one to calculate binary or
hexadecimal digits beginning at the n-th digit, without needing to calculate any of the
first n− 1 digits, using a simple scheme that requires very little memory and no multiple-
precision arithmetic software [2][13, pg. 135-143]. The BBP formula for π has recently
found a practical application—it is now employed in the g95 Fortran compiler as part of
transcendental function evaluation software.

Since 1995, numerous other formulas of this type have been found, using the PSLQ-
based computational approach, and then subsequently proven [13, pg. 147–149]. A sam-
pling of these discoveries is shown in Figure 2, including a recent discovery regarding the
integrals

Jn =
∫ (n+1)π/60

nπ/60
log

∣∣∣∣∣
tan t +

√
7

tan t−√7

∣∣∣∣∣ dt

The
?
= notation in Figure 2 means that this “identity” has been discovered numerically,

and verified to 2,000-digit accuracy, but no formal proof is yet known.
Further, it has been found that these computer-discovered formulas have implications

for the age-old question of whether (and why) the digits of constants such as π and log 2
appear statistically random [5][13, pg. 163–174]. These developments have attracted
considerable attention, including feature articles in Scientific American and Science News
[19, 24]. This same line of investigation has further led to a formal proof of normality
(statistical randomness in a specific sense) for an uncountably infinite class of explicit real
numbers. The simplest example of this class is the constant

α2,3 =
∞∑

n=1

1

3n23n ,

which is 2-normal: every string of m binary digits appears, in the limit, with frequency
2−m [6][13, pg. 174–178]. An efficient pseudorandom number generator, based on the
binary digits of this constant, can be obtained from LBNL high-precision software site:
http://crd.lbl.gov/~dhbailey/mpdist.

12. Identification of Constants in Quantum Field Theory
A few years ago, British physicist David Broadhurst found an application of high-

precision PSLQ computations in quantum field theory [15]. In particular, he found, using

10

π
√

3 =
9
32

∞∑

k=0

1
64k

(
16

6k + 1
− 8

6k + 2
− 2

6k + 4
− 1

6k + 5

)

π2 =
1
8

∞∑

k=0

1
64k

[
144

(6k + 1)2
− 216

(6k + 2)2
− 72

(6k + 3)2
− 54

(6k + 4)2
+

9
(6k + 5)2

]

π2 =
2
27

∞∑

k=0

1
729k

[
243

(12k + 1)2
− 405

(12k + 2)2
− 81

(12k + 4)2
− 27

(12k + 5)2

− 72
(12k + 6)2

− 9
(12k + 7)2

− 9
(12k + 8)2

− 5
(12k + 10)2

+
1

(12k + 11)2

]

log 3 =
1

729

∞∑

k=0

1
729k

(
729

6k + 1
+

81
6k + 2

+
81

6k + 3
+

9
6k + 4

+
9

6k + 5
+

1
6k + 6

)

π log 2 =
1

256

∞∑

k=0

1
4096k

[
4096

(24k + 1)2
− 8192

(24k + 2)2
− 26112

(24k + 3)2
+

15360
(24k + 4)2

− 1024
(24k + 5)2

+
9984

(24k + 6)2
+

11520
(24k + 8)2

+
2368

(24k + 9)2
− 512

(24k + 10)2

+
768

(24k + 12)2
− 64

(24k + 13)2
+

408
(24k + 15)2

+
720

(24k + 16)2

+
16

(24k + 17)2
+

196
(24k + 18)2

+
60

(24k + 20)2
− 37

(24k + 21)2

]

0 ?= −2J2 − 2J3 − 2J4 + 2J10 + 2J11 + 3J12 + 3J13 + J14 − J15 − J16

−J17 − J18 − J19 + J20 + J21 − J22 − J23 + 2J25

Figure 2: Some new math identities found by high-precision computations

11

PSLQ computations, that in each of ten cases with unit or zero mass, the finite part
the scalar 3-loop tetrahedral vacuum Feynman diagram reduces to 4-letter “words” that
represent iterated integrals in an alphabet of 7 “letters,” namely the one-forms Ω := dx/x
and ωk := dx/(λ−k−x), where λ := (1 +

√−3)/2 is the primitive sixth root of unity, and
k runs from 0 to 5. In this context, a 4-letter “word” is a 4-dimensional iterated integral,
such as

U := ζ(Ω2ω3ω0) =
∫ 1

0

dx1

x1

∫ x1

0

dx2

x2

∫ x2

0

dx3

(−1− x3)

∫ x3

0

dx4

(1− x4)
=

∑

j>k>0

(−1)j+k

j3k

There are 74 four-letter words. Only two of these are primitive terms occurring in the
3-loop Feynman diagrams: U , above, and

V := Re[ζ(Ω2ω3ω1)] =
∑

j>k>0

(−1)j cos(2πk/3)

j3k
.

The remaining terms in the diagrams reduce to products of constants found in Feynman
diagrams with fewer loops. These ten cases as shown in Figure 3. In these diagrams,
dots indicate particles with nonzero rest mass. The formulas that have been found,
using PSLQ, for the corresponding constants are given in Figure 4. Here the constant
C =

∑
k>0 sin(πk/3)/k2.

In each case, these formulas were later proven to be correct. But until the “experimen-
tal” results of the computations were found, no one had any solid reason to believe that
such relations might exist. Indeed, the adjective “experimental” is quite appropriate here,
because the PSLQ computations played a role entirely analogous to (and just a crucial
as) a conventional laboratory experiment.

J
J

J
JJ

©©©
HHH

s
V1

J
J

J
JJ

©©©
HHH

s s

V2A

J
J

J
JJ

©©©
HHH

s

s
V2N

J
J

J
JJ

©©©
HHH

s s
s

V3T

J
J

J
JJ

©©©
HHHs

s
s

V3S

J
J

J
JJ

©©©
HHH

s
s

s
V3L

J
J

J
JJ

©©©
HHHs

s
s

s
V4A

J
J

J
JJ

©©©
HHH

s
s

s
s

V4N

J
J

J
JJ

©©©
HHH

s
s

s s
s

V5

J
J

J
JJ

©©©
HHH

s
s

s s
s

s
V6

Figure 3: The ten tetrahedral cases

13. Conclusion
We have presented here a brief survey of the rapidly expanding usage of high-precision

arithmetic in modern scientific computing. It is worth noting that all of these examples
have arisen in the past ten years. Thus we may be witnessing the birth of a new era of
scientific computing, in which the numerical precision required for a computation is as
important to the program design as are the algorithms and data structures.

12

V1 = 6ζ(3) + 3ζ(4)

V2A = 6ζ(3)− 5ζ(4)

V2N = 6ζ(3)− 13
2
ζ(4)− 8U

V3T = 6ζ(3)− 9ζ(4)

V3S = 6ζ(3)− 11
2
ζ(4)− 4C2

V3L = 6ζ(3)− 15
4
ζ(4)− 6C2

V4A = 6ζ(3)− 77
12

ζ(4)− 6C2

V4N = 6ζ(3)− 14ζ(4)− 16U

V5 = 6ζ(3)− 469
27

ζ(4) + 8
3
C2 − 16V

V6 = 6ζ(3)− 13ζ(4)− 8U − 4C2

Figure 4: Formulas found by PSLQ for the ten cases of Figure 3

In one respect, perhaps it is not a coincidence that interest in high-precision arithmetic
has arisen during the same period that a concerted attempt has been made to implement
many scientific computations on highly parallel and distributed systems. These systems
have made possible much larger-scale runs than before, greatly magnifying numerical
difficulties. Also, even on single-processor systems, memory and performance have greatly
expanded (a gift of Moore’s Law in semiconductor technology), enabling much larger
computations than were feasible only a few years ago.

It may well be that other computations now being performed on these systems have
significant numerical difficulties, but those who use these codes don’t yet realize the extent
of these difficulties. With the advent of relatively painless software to convert programs
to use high-precision arithmetic, it is now possible to periodically run a large scientific
computation with double-double or higher-precision arithmetic, in order to determine how
accurate its results really are.

In fact, the software tools now available for high-precision arithmetic can be used in
every stage of numerical error management: (1) periodic testing of a scientific code to
see if it is becoming numerically sensitive; (2) determining how many digits in the results
(intermediate or final) are reliable; (3) pinning down a numerical difficulty to a few lines
of code; and (4) rectifying the numerical difficulties that are uncovered.

While software described in this paper and elsewhere will help scientists in the short
run, in the longer run it is essential that computer vendors recognize the need to provide
both hardware and software support for high-precision arithmetic. An IEEE committee
has been formed for updating the IEEE-754 floating-point arithmetic standard; 128-bit
support is one of the key provisions of their draft standard. This same committee is also
considering establishing standards for arbitrary-precision arithmetic. These are welcome
and timely developments.

13

Acknowledgements
The author acknowledges the contributions of numerous colleagues in the preparation

of this article, including: Ed Baron, Ben Barrowes, Jonathan Borwein; Richard Crandall,
Chris Ding, Alexei Frolov, William Kahan, Peter Nugent, Michael Strayer and Zong-Chao
Yan.

References

[1] David H. Bailey, “Integer Relation Detection,” Computing in Science and Engineer-
ing, Jan-Feb., 2000, pg. 24–28.

[2] David H. Bailey, Peter B. Borwein, and Simon Plouffe, “On the Rapid Computation
of Various Polylogarithmic Constants,” Mathematics of Computation, vol. 66, no.
218 (Apr 1997), pg. 903–913.

[3] David H. Bailey and David Broadhurst, “Parallel Integer Relation Detection: Tech-
niques and Applications,” Mathematics of Computation, vol. 70, no. 236 (2000), pg.
1719–1736.

[4] David H. Bailey and David J. Broadhurst, “A Seventeenth-Order Polylogarithm Lad-
der,” http://crd.lbl.gov/~dhbailey/dhbpapers/ladder.pdf (1999).

[5] David H. Bailey and Richard E. Crandall, “On the Random Character of Fundamen-
tal Constant Expansions,” Experimental Mathematics, vol. 10, no. 2 (June 2001), pg.
175–190.

[6] David H. Bailey and Richard E. Crandall, “Random Generators and Normal Num-
bers,” Experimental Mathematics, vol. 11, no. 4 (2004), pg. 527–546.

[7] D. H. Bailey and A. M. Frolov, “Universal Variational Expansion for High-Precision
Bound-State Calculations in Three-Body Systems. Applications to Weakly-Bound,
Adiabatic and Two-Shell Clouster Systems,” Journal of Physics B, vol. 35, no. 20
(28 Oct 2002), pg. 42870–4298.

[8] David H. Bailey, R. Krasny and R. Pelz, “Multiple Precision, Multiple Processor
Vortex Sheet Roll-Up Computation,” Proceedings of the Sixth SIAM Conference on
Parallel Processing for Scientific Computing, 1993, SIAM, Philadelphia, pg. 52–56.

[9] David H. Bailey and Xiaoye S. Li, “A Comparison of Three High-Precision Quadra-
ture Schemes,” manuscript available at
http://crd.lbl.gov/~dhbailey/dhbpapers/quadrature.pdf (2004).

[10] David H. Bailey and Sinai Robins, “Highly Parallel, High-Precision Numerical Inte-
gration,” manuscript available at
http://crd.lbl.gov/~dhbailey/dhbpapers/quadparallel.pdf (2004).

14

[11] Edward Baron and Peter Nugent, personal communication, Nov. 2004.

[12] B. E. Barrowes, K. O’Neill, T. M. Grzegorczyk and J. A. Kong, “Asymptotic Expan-
sions of the Prolate Angular Spheroidal Wave Function for Complex Size Parameter,”
Studies in Applied Mathematics, to appear.

[13] Jonathan M. Borwein and David H. Bailey, Mathematics by Experiment: Plausible
Reasoning in the 21st Century.

[14] Richard P. Brent, “A Fortran Multiple-Precision Arithmetic Package,” ACM Trans-
actions on Mathematical Software, vol. 4, no. 1 (Mar 1978), pg. 57–70.

[15] David J. Broadhurst, “Massive 3-loop Feynman Diagrams Reducible
to SC∗ Primitives of Algebras of the Sixth Root of Unity”, preprint,
March 1998, to appear in European Physical Journal C. Available from
http://xxx.lanl.gov/abs/hep-th/9803091.

[16] Russel E. Caflisch, “Singularity Formation for Complex Solutions of the 3D Incom-
pressible Euler Equations,” Physica D, vol. 67, no. 1 (1993), pg. 1–18.

[17] Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspec-
tive, Springer-Verlag, New York, 2001.

[18] A. M. Frolov and D. H. Bailey, “Highly Accurate Evaluation of the Few-Body Aux-
iliary Functions and Four-Body Integrals,” Journal of Physics B, vol. 36, no. 9 (14
May 2003), pg. 1857–1867.

[19] Wayt Gibbs, “A Digital Slice of Pi,” Scientific American, vol. 288, no. 5 (May 2003),
pg. 23–24.

[20] P. H. Hauschildt and E. Baron, “The Numerical Solution of the Expanding Stellar
Atmosphere Problem,” Journal Computational and Applied Mathematics, vol. 109
(1999), pg. 41–63.

[21] Yun He and Chris Ding, “Using Accurate Arithmetics to Improve Numerical Repro-
ducibility and Stability in Parallel Applications,” Journal of Supercomputing, vol.
18, no. 3 (Mar 2001), pg 259–277.

[22] William Kahan, personal communication, Nov. 2004.

[23] William Kahan and Joseph Darcy, “How Java’s Floating-Point Hurts Everyone Ev-
erywhere,” available at http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf, 1998.

[24] Erica Klarreich, “Math Lab: How Computer Experiments Are Transforming Math-
ematics,” Science News, vol. 165 (Apr. 24, 2004), pg. 266–268.

15

[25] Jonathan R. Shewchuk, “Adaptive Precision Floating-Point Arithmetic and Fast Ro-
bust Geometric Predicates,” Discrete and Computational Geometry, vol. 18 (1997),
pg. 305–363.

[26] Michael Strayer, personal communication, Nov. 2004.

[27] Z.-C. Yan and G. W. F. Drake, “Bethe Logarithm and QED Shift for Lithium,”
Physics Review Letters, vol. 81 (12 Sep 2003), pg. 774–777.

[28] T. Zhang, Z.-C. Yan and G. W. F. Drake, “QED Correctins of O(mc2α7 ln α) to the
Fine Structure Splittings of Helium and He-Like Ions,” Physics Review Letters, vol.
77, no. 26 (27 Jun 1994), pg. 1715–1718.

16

