Low-cost flexible packaging for high-power Li-Ion HEV batteries.

PDF Version Also Available for Download.

Description

Batteries with various types of chemistries are typically sold in rigid hermetically sealed containers that, at the simplest level, must contain the electrolyte while keeping out the exterior atmosphere. However, such rigid containers can have limitations in packaging situations where the form of the battery is important, such as in hand-held electronics like personal digital assistants (PDAs), laptops, and cell phones. Other limitations exist as well. At least one of the electrode leads must be insulated from the metal can, which necessitates the inclusion of an insulated metal feed-through in the containment hardware. Another limitation may be in hardware and ... continued below

Physical Description

56 pages

Creation Information

Jansen, A. N.; Amine, K. & Henriksen, G. L. June 18, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 23 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Argonne National Laboratory
    Publisher Info: Argonne National Lab., Argonne, IL (United States)
    Place of Publication: Argonne, Illinois

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Batteries with various types of chemistries are typically sold in rigid hermetically sealed containers that, at the simplest level, must contain the electrolyte while keeping out the exterior atmosphere. However, such rigid containers can have limitations in packaging situations where the form of the battery is important, such as in hand-held electronics like personal digital assistants (PDAs), laptops, and cell phones. Other limitations exist as well. At least one of the electrode leads must be insulated from the metal can, which necessitates the inclusion of an insulated metal feed-through in the containment hardware. Another limitation may be in hardware and assembly cost, such as exists for the lithium-ion batteries that are being developed for use in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The large size (typically 10-100 Ah) of these batteries usually results in electric beam or laser welding of the metal cap to the metal can. The non-aqueous electrolyte used in these batteries are usually based on flammable solvents and therefore require the incorporation of a safety rupture vent to relieve pressure in the event of overcharging or overheating. Both of these features add cost to the battery. Flexible packaging provides an alternative to the rigid container. A common example of this is the multi-layered laminates used in the food packaging industry, such as for vacuum-sealed coffee bags. However, flexible packaging for batteries does not come without concerns. One of the main concerns is the slow egress of the electrolyte solvent through the face of the inner laminate layer and at the sealant edge. Also, moisture and air could enter from the outside via the same method. These exchanges may be acceptable for brief periods of time, but for the long lifetimes required for batteries in electric/hybrid electric vehicles, batteries in remote locations, and those in satellites, these exchanges are unacceptable. Argonne National Laboratory (ANL), in collaboration with several industrial partners, is working on low-cost flexible packaging as an alternative to the packaging currently being used for lithium-ion batteries [1,2]. This program is funded by the FreedomCAR & Vehicle Technologies Office of the U.S. Department of Energy. (It was originally funded under the Partnership for a New Generation of Vehicles, or PNGV, Program, which had as one of its mandates to develop a power-assist hybrid electric vehicle with triple the fuel economy of a typical sedan.) The goal in this packaging effort is to reduce the cost associated with the packaging of each cell several-fold to less than $1 per cell ({approx} 50 cells are required per battery, 1 battery per vehicle), while maintaining the integrity of the cell contents for a 15-year lifetime. Even though the battery chemistry of main interest is the lithium-ion system, the methodology used to develop the most appropriate laminate structure will be very similar for other battery chemistries.

Physical Description

56 pages

Source

  • Other Information: PBD: 18 Jun 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ANL-04/09
  • Grant Number: W-31-109-ENG-38
  • DOI: 10.2172/828774 | External Link
  • Office of Scientific & Technical Information Report Number: 828774
  • Archival Resource Key: ark:/67531/metadc782827

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 18, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • March 22, 2016, 3:13 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 23

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Jansen, A. N.; Amine, K. & Henriksen, G. L. Low-cost flexible packaging for high-power Li-Ion HEV batteries., report, June 18, 2004; Argonne, Illinois. (digital.library.unt.edu/ark:/67531/metadc782827/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.