Visible Spectrum Incandescent Selective Emitter

PDF Version Also Available for Download.

Description

The purpose of the work performed was to demonstrate the feasibility of a novel bi-layer selective emitter. Selective emitters are incandescent radiant bodies with emissivities that are substantially larger in a selected part of the radiation spectrum, thereby significantly shifting their radiated spectral distribution from that of a blackbody radiating at the same temperature. The major research objectives involved answering the following questions: (1) What maximum VIS/NIR radiant power and emissivity ratios can be attained at 2650 K? (2) What is the observed emitter body life and how does its performance vary with time? (3) What are the design tradeoffs ... continued below

Physical Description

vp.

Creation Information

Inc., Sonsight April 30, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The purpose of the work performed was to demonstrate the feasibility of a novel bi-layer selective emitter. Selective emitters are incandescent radiant bodies with emissivities that are substantially larger in a selected part of the radiation spectrum, thereby significantly shifting their radiated spectral distribution from that of a blackbody radiating at the same temperature. The major research objectives involved answering the following questions: (1) What maximum VIS/NIR radiant power and emissivity ratios can be attained at 2650 K? (2) What is the observed emitter body life and how does its performance vary with time? (3) What are the design tradeoffs for a dual heating approach in which both an internally mounted heating coil and electrical resistance self-heating are used? (4) What are the quantitative improvements to be had from utilizing a bi-layer emitter body with a low emissivity inner layer and a partially transmissive outer layer? Two approaches to obtaining selective emissivity were investigated. The first was to utilize large optical scattering within an emitter material with a spectral optical absorption that is much greater within the visible spectrum than that within the NIR. With this approach, an optically thick emitter can radiate almost as if optically thin because essentially, scattering limits the distance below the surface from which significant amounts of internally generated radiation can emerge. The performance of thin emitters was also investigated (for optically thin emitters, spectral emissivity is proportional to spectral absorptivity). These emitters were fabricated from thin mono-layer emitter rods as well as from bi-layer rods with a thin emitter layer mounted on a substrate core. With an initially estimated energy efficiency of almost three times that of standard incandescent bulbs, a number of energy, economic and environmental benefits such as less energy use and cost, reduced CO{sub 2} emissions, and no mercury contamination was initially projected. The work performed provided answers to a number of important questions. The first is that, with the investigated approaches, the maximum sustained emitter efficiencies are about 1.5 times that of a standard incandescent bulb. This was seen to be the case for both thick and thin emitters, and for both mono-layer and bi-layer designs. While observed VIS/NIR ratios represent improvements over standard incandescent bulbs, it does not appear sufficient to overcome higher cost (i.e. up to five times that of the standard bulb) and ensure commercial success. Another result is that high temperatures (i.e. 2650 K) are routinely attainable without platinum electrodes. This is significant for reducing material costs. A novel dual heating arrangement and insulated electrodes were used to attain these temperatures. Another observed characteristic of the emitter was significant grain growth soon after attaining operating temperatures. This is an undesirable characteristic that results in substantially less optical scattering and spectral selectivity, and which significantly limits emitter efficiencies to the values reported. Further work is required to address this problem.

Physical Description

vp.

Notes

OSTI as DE00828224

Source

  • Other Information: PBD: 30 Apr 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DE-FG36-02GO12066
  • Grant Number: FG36-02GO12066
  • DOI: 10.2172/828224 | External Link
  • Office of Scientific & Technical Information Report Number: 828224
  • Archival Resource Key: ark:/67531/metadc782825

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 30, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Aug. 9, 2016, 8:23 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 9

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Inc., Sonsight. Visible Spectrum Incandescent Selective Emitter, report, April 30, 2004; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc782825/: accessed September 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.