Novel Miniature Spectrometer For Remote Chemical Detection

PDF Version Also Available for Download.

Description

New chemical sensing technologies are critically important for addressing many of EM's priority needs as discussed in detail at http://emsp.em.doe.gov/needs. Many technology needs were addressed by this research. For example, improved detection strategies are needed for non-aqueous phase liquids (NAPL's), such as PCE (Cl2C=CCl2) and TCE (HClC=CCl2), which persist in the environment due their highly stable structures. By developing a miniature, ultra-sensitive, selective, and field-deployable detector for NAPL's, the approximate source location could be determined with minimal investigative expense. Contaminant plumes could also be characterized in detail. The miniature spectrometer developed under Project No.60231 could also permit accurate rate measurements ... continued below

Physical Description

vp.

Creation Information

Pipino, Andrew C.R. September 14, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

New chemical sensing technologies are critically important for addressing many of EM's priority needs as discussed in detail at http://emsp.em.doe.gov/needs. Many technology needs were addressed by this research. For example, improved detection strategies are needed for non-aqueous phase liquids (NAPL's), such as PCE (Cl2C=CCl2) and TCE (HClC=CCl2), which persist in the environment due their highly stable structures. By developing a miniature, ultra-sensitive, selective, and field-deployable detector for NAPL's, the approximate source location could be determined with minimal investigative expense. Contaminant plumes could also be characterized in detail. The miniature spectrometer developed under Project No.60231 could also permit accurate rate measurements in less time, either in the field or the laboratory, which are critically important in the development, testing, and ultimate utilization of models for describing contaminant transport. The technology could also be used for long-term groundwater monitoring or long-term stewardship in general. Many science needs are also addressed by the Project 60231, since the effort significantly advances the measurement science of chemical detection. Developed under Project No.60231, evanescent wave cavity ring-down spectroscopy (EW-CRDS) is a novel form of CRDS, which is an the emerging optical absorption technique. Several review articles on CRDS, which has been generally applied only to gas-phase diagnostics, have been published1-3. EW-CRDS4-10 forms the basis for a new class of chemical sensors that extends CRDS to other states of matter and leads to a miniaturized version of the concept. EW-CRDS uses miniature solid-state optical resonators that incorporate one or more total internal reflection (TIR) surfaces, which create evanescent waves. The evanescent waves emanate from the TIR surfaces, sampling the surrounding medium. The utility of evanescent waves in chemical analysis forms the basis for the field of attenuated total reflectance (ATR)11 spectroscopy. Many diagnostic problems can be solved by ATR methods that are intractable by ordinary methods, but ATR typically lacks sensitivity for ultra-trace chemical detection. In EWCRDS, the ring-down time of a resonator sensitively responds to chemical species present in the evanescent wave thereby combining the advantages of ATR with the sensitivity of CRDS. Furthermore, EW-CRDS forms the basis for a rugged miniature chemical sensor for which the laser source and photodetector can be located remotely by using optical fiber. Work on EW-CRDS began at NIST with the NRC postdoctoral associateship of the current Principal Investigator during fiscal 1996-1997. Since completion of the NRC associateship, work on EW-CRDS has been majority funded through Project 60231, with some additional funding from the Advanced Technology Program (35K/year in 2000).

Physical Description

vp.

Source

  • Other Information: PBD: 14 Sep 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-60231
  • Grant Number: A107-97ER62518
  • DOI: 10.2172/829899 | External Link
  • Office of Scientific & Technical Information Report Number: 829899
  • Archival Resource Key: ark:/67531/metadc782731

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 14, 2000

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 3:18 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Pipino, Andrew C.R. Novel Miniature Spectrometer For Remote Chemical Detection, report, September 14, 2000; United States. (digital.library.unt.edu/ark:/67531/metadc782731/: accessed November 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.